Random series in the real interpolation spaces between the spaces vp

  • Gilles Pisier
  • Quanhua Xu
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1267)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BL]
    J. Bergh, J. Löfström. Interpolation spaces. An Introduction. Springer-Verlag. Berlin-Heidelberg-New York (1976).CrossRefMATHGoogle Scholar
  2. [BP]
    J. Bergh, J. Peetre. On the spaces V p (0<p≤∞). Bollettino della Unione Matematica Italiana. 10 (1974) 632–648.MathSciNetMATHGoogle Scholar
  3. [B]
    J. Bretagnolle. p-variation des fonctions aléatoires. Séminaire de Probabilités VI (1972) Springer Lecture Notes No. 258, p. 51–71.Google Scholar
  4. [BB]
    P.L. Butzer, H. Behrens. Semi-groups of operators and approximation. Springer-Verlag. Berlin-Heidelberg-New York (1967).CrossRefGoogle Scholar
  5. [DJL]
    W.J. Davis, W.B. Johnson and J. Lindenstrauss. The ℓ1n problem and degrees of non reflexivity. Studia Math. 55 (1976), 123–139.MathSciNetMATHGoogle Scholar
  6. [DL]
    W.J. Davis, J. Lindenstrauss. The ℓ1n problem and degrees of non-reflexivity II. Studia Math. 58 (1976) 179–196.MathSciNetMATHGoogle Scholar
  7. [DFJP]
    W.J. Davis, T. Figiel, W. Johnson, A. Pełczyński. Factoring weakly compact operators. Journal of Funct. Anal. 17 (1974) 311–327.MathSciNetCrossRefMATHGoogle Scholar
  8. [F]
    J. Farahat. On the problem of k structure. Israel J. Math. 28 (1977) 141–150.MathSciNetCrossRefMATHGoogle Scholar
  9. [H]
    T. Holmsted. Interpolation of quasi-normed spaces. Math. Scand 26 (1970) 177–199.MathSciNetGoogle Scholar
  10. [J1]
    R.C. James. A nonreflexive Banach space that is uniformly nonoctahedral. Israel J. Math. 18 (1974) 145–155.MathSciNetCrossRefMATHGoogle Scholar
  11. [J2]
    R.C. James. Nonreflexive spaces of type 2. Israel J. Math. 30 (1978) 1–13.MathSciNetCrossRefMATHGoogle Scholar
  12. [J3]
    R.C. James. Some self-dual properties of normed linear spaces. Annals of Math Studies. No. 69 (1972) 159–175.Google Scholar
  13. [J4]
    R.C. James. Uniformly nonsquare Banach spaces. Annals of Math. 80 (1964) 542–550.CrossRefMATHGoogle Scholar
  14. [J5]
    R.C. James. Banach spaces quasi-reflexive of order one. Studia Math. 60 (1977) 157–177.MathSciNetMATHGoogle Scholar
  15. [J6]
    R.C. James. Characterizations of reflexivity. Studia Math. 23 (1964) 205–216.MathSciNetMATHGoogle Scholar
  16. [J7]
    R.C. James. Reflexivity and the supremum of linear functionals. Annals of Math. 66 (1957) 159–169.MathSciNetCrossRefMATHGoogle Scholar
  17. [JL]
    R.C. James, J. Lindenstrauss. The octohedral problem for Banach spaces. Proceedings of the Seminar on Random Series, Convex Sets, and Geometry of Banach Spaces. Aarhus University (Denmark) 1974 p. 100–120.Google Scholar
  18. [JT]
    W. Johnson, L. Tzafrari. Some more Banach spaces which do not have local unconditional structure. Houston J. Math. 3 (1977) 55–60.MathSciNetGoogle Scholar
  19. [Ka]
    M.I. Kadeč. The superreflexivity property of a Banach space in terms of the closeness of its finite dimensional subspaces to Euclidean spaces. Functional analysis and its Applications 12 (1978) 142–144.CrossRefGoogle Scholar
  20. [Kr]
    A. Kruglov. On some spaces of means. Vestnik Leningr. Univ. 1 (1972) 155–156.MathSciNetMATHGoogle Scholar
  21. [KS]
    A. Kruglov, M. Solomjak. Interpolation of operators in the spaces V p. Vestnik Leningrad Univ. (1971) No. 13. Translated Vol 4 (1977) 209–216.Google Scholar
  22. [K]
    S. Kwapień. Isomorphic characterization of inner-product spaces by orthogonal series with vector valued coefficients. Studia Math. 44 (1972) 583–595.MathSciNetMATHGoogle Scholar
  23. [LP]
    J. Lindenstrauss, A. Pełczyński. Absolutely summing operators in L p-spaces and their applications. Studia Math. 29 (1968) 275–326.MathSciNetMATHGoogle Scholar
  24. [LT1]
    J. Lindenstrauss, L. Tzafriri. Classical Banach spaces I. Springer-Verlag. Berlin, Heidelberg, New York (1977).CrossRefMATHGoogle Scholar
  25. [LT2]
    J. Lindenstrauss, L. Tzafriri. Classical Banach spaces II. Springer-Verlag. Berlin, Heidelberg, New York (1979).CrossRefMATHGoogle Scholar
  26. [MP]
    B. Maurey, G. Pisier. Séries de variables aléatories vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58 (1976), 45–90.MathSciNetMATHGoogle Scholar
  27. [M]
    P. Millar. Path behavior of processes with stationary independent increments. Z. für Wahrshein. 17 (1971), 53–73.MathSciNetCrossRefMATHGoogle Scholar
  28. [Mi]
    M. Milman. Complex interpolation and geometry of Banach spaces. Ann. Mat. Pura Appl. 136 (1984), 317–328.MathSciNetCrossRefMATHGoogle Scholar
  29. [P1]
    G. Pisier. Martingales with values in uniformly convex spaces. Israel J. Math 20 (1975), 326–350.MathSciNetCrossRefMATHGoogle Scholar
  30. [P2]
    G. Pisier. Holomorphic semi-groups and the geometry of Banach spaces. Annals of Math. 115 (1982), 375–392.MathSciNetCrossRefMATHGoogle Scholar
  31. [Pt]
    V. Ptak. Biorthogonal systems and reflexivity of Banach spaces. Čekoslovak Math. Journal 9 (1959), 319–326.MathSciNetMATHGoogle Scholar
  32. [TJ]
    N. Tomczak-Jaegermann. Computing 2-summing norm with few vectors. Arkiv för Matematik 17 (1979), 273–277.MathSciNetCrossRefMATHGoogle Scholar
  33. [X1]
    Q. Xu. In this volume.Google Scholar
  34. [X2]
    Q. Xu. In preparationGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Gilles Pisier
    • 1
    • 2
  • Quanhua Xu
    • 2
    • 3
  1. 1.Texas A and M UniversityUSA
  2. 2.Université Paris 6France
  3. 3.Wuhan UniversityChina

Personalised recommendations