Advertisement

Conditional expectation in quantum probability

  • Dènes Petz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1303)

Keywords

Conditional Expectation Operator Algebra Relative Entropy Modular Group Tracial State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Accardi, C. Cecchini, Conditinal expectations in von Neumann algebras and a theorem of Takesaki, J. Funct. Anal.,45(1982), 245–273.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    L. Accardi, C. Cecchini, Surjectivity of the conditional expectation on the L1-spaces, Lecture Notes in Math., 992, 436–442, Springer, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    H. Araki, Relative Hamiltonian for faithful normal states of a von Neumann algebra, Publ. Res. Inst. Math. Sci.,9(1973), 165–209.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    O.Bratteli, D.W.Robinson, Operator algebras and quantum statistical mechanics I,II, Springer 1979 and 1981.Google Scholar
  5. 5.
    C. Cecchini, D. Petz, Norm convergence of generalized martingales in LP-spaces over von Neumann algebras, Acta Sci. Math., 48(1985), 55–63.MathSciNetzbMATHGoogle Scholar
  6. 6.
    C.Cecchini, Some non-commutative Radon-Nikodym theorems, in this volume.Google Scholar
  7. 7.
    A. Connes, Caracterization des espaces vectoriels ordonnées sousjacents aux algebres de von Neumann, Ann. Inst. Fourier, 24(1974), 121–155.MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Doplicher, R. Longo, Standard and split inclusions of von Neumann algebras, Invent. Math. 75(1984), 493–536.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Frigerio, Duality of completely positive quasi-free maps and a theorem of L.Accardi and C.Cecchini, Boll. Un. Mat. Ital., 6(1983), 269–281.MathSciNetzbMATHGoogle Scholar
  10. 10.
    F. Hiai, M. Ohya, M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras, Pacific J. Math., 96(1981), 99–109.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    F. Hiai, M. Ohya, M. Tsukada, Sufficiency and relative entropy in *-algebras with applications to quantum systems, Pacific J. Math., 107(1983), 117–140.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    F. Hiai, M. Tsukada, Strong martingale convergence of generalized conditional expectations on von Neumann algebras, Trans. Amer. Math. Soc., 282(1984), 791–798.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    B. Kümmerer, Adjoints of operators on W*-algebras, Preprint, Tübingen, 1985.zbMATHGoogle Scholar
  14. 14.
    R. Longo, Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split inclusions, Invent. Math., 76(1984), 145–155.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    S.Ch. Moy, Characterization of conditional expectation as a transform of function spaces, Pacific J. Math., 4(1954), 47–63.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Nakamura, T. Turumaru, Expectations in an operator algebra, Tohoku J. Math., 6(1954), 189–204MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D. Petz, Quantum ergodic theorems, Proceedings of the Workshop on Quantum Probability, Lecture Notes in Math., 1055, 289–300, Springer, 1984.MathSciNetCrossRefGoogle Scholar
  18. 18.
    D. Petz, A dual in von Neumann algebras, Quart. J. Math. Oxford, 35(1984), 475–483.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Comm. Math. Phys., 105(1986), 123–131.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    D.Petz, Sufficiency of channels over von Neumann algebras, Quart. J. Math. Oxford, to appear.Google Scholar
  21. 21.
    G.A. Raggio, Comparison of Uhlmann's transition probability with the one induced by the natural positive cone of a von Neumann algebra, Lett. Math. Phys., 6(1982), 233–236.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    F. Riesz, B.Sz. Nagy, Lectures on functional analysis, Ungar, New York, 1955.zbMATHGoogle Scholar
  23. 23.
    M. Takesaki, Conditional expectations in von Neumann algebras, J.Funct. Analysis, 9(1972), 306–321.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    H. Umegaki, Conditional expectations in an operator algebra, Tohoku J. Math., 6(1954), 177–181.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. Umegaki, Conditional expectations in an operator algebra IV (entropy and information), Kodai Math. Sem. Rep., 14(1962), 59–85.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Dènes Petz
    • 1
  1. 1.Mathematical Institute HASBudapest, PF. 127Hungary

Personalised recommendations