Various catastrophe machines

  • Tim Poston
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 525)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Boys, C.V.; Soap Bubbles and the Forces which Mould Them, 1889 (1959 London, Heinemann; New York, Dover).Google Scholar
  2. [2]
    Courant, R.; Soap film experiments with minimal surfaces, Am. Math. Monthly 47 (1940), 168–174.MathSciNetMATHGoogle Scholar
  3. [3]
    Duistermaat, J.J.; Oscillatory Integrals, Lagrange Immersions and Unfolding of Singularities, Comm. Pure & Appl. Math. XXVII (1974), 207–281.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Dubois, J.-G.; Dufour, J.-P.; La Machine à Catastrophes, Ann. Inst. Henri Poincaré XX no. 2 (1974), 135–151.MathSciNetMATHGoogle Scholar
  5. [5]
    Guckenheimer, J.; Catastrophes and partial differential equations, Ann. Inst. Fourier, Vol. 23 (1973), 31–59.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Jänich, K.; Caustics and Catastrophes, Math. Ann. 209 (1974), 161–180.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Milnor, J.; Morse Theory, Ann. Math. Studies 51 (1963).Google Scholar
  8. [8]
    Morse; Tompkins; The continuity of the area of harmonic surfaces as a function of the boundary representation, Amer. Jour. Math. 63 (1940), 168–174.MathSciNetGoogle Scholar
  9. [9]
    Palais, R. S.; Morse Theory on Hilbert Manifolds, Topology 2 (1963), 299–340.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    Palais, R.S.; The Morse Lemma for Banach Spaces, Bull. Am. Math. Soc. 75 (1969), 968–971.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Plateau, J.; Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires, 1873. Paris: Gauthier-Villars. London: Trubner & Co.Google Scholar
  12. [12]
    Porteous, I.; The normal singularities of a submanifold, J. Diff. Geom. 5 (1971), 543–564.MathSciNetMATHGoogle Scholar
  13. [13]
    Poston, T.; Woodcock, A.E.R.; Zeeman’s Catastrophe Machine, Proc. Camb. Phil. Soc. (1973), 217–226.Google Scholar
  14. [14]
    Poston, T.; Woodcock, A.E.R.; A higher catastrophe machine, Proc. Camb. Phil. Soc. (in press).Google Scholar
  15. [15]
    Takens, F.; Implicit Differential Equations, these Proceedings.Google Scholar
  16. [16]
    Tromba, A.J.; The Morse Lemma on Arbitrary Banach Spaces, Bull. Am. Math. Soc. 79 (1973), 85–86.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Wasserman, G.; Stability of Caustics, preprint Nov. 1974.Google Scholar
  18. [18]
    Wasserman, G.; (r,s)-stability of unfoldings, these Proceedings.Google Scholar
  19. [19]
    Zeeman, E.C.; Trotman, D.J.A.; The classification of elementary catastrophes of codimension ≤5, University of Warwick, Maths Institute Lecture notes 1974.Google Scholar
  20. [20]
    Zeeman, E.C.; A catastrophe machine, in Towards a Theoretical Biology 4 (Ed. C.H. Waddington), Aldine-Atherton, Chicago 1972, 276–282.Google Scholar
  21. [21]
    Zeeman, E.C.; Euler buckling, these Proceedings.Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Tim Poston
    • 1
  1. 1.Battelle, Centre de Recherche de GenèveGenèveSwitzerland

Personalised recommendations