Hodge Theory pp 107-114 | Cite as

Truncations of mixed hodge complexes

  • Richard M. Hain
  • Steven Zucker
Part of the Lecture Notes in Mathematics book series (LNM, volume 1246)


Spectral Sequence Projective Variety Hodge Structure Weight Filtration Mixed Hodge Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Clemens, C.H.: Degeneration of Kähler manifolds. Duke Math. J. 44, 215–290 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Deligne, P.: Théorie de Hodge, II. Publ. Math. IHES 40, 5–57 (1971); III, 44, 5–77 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Durfee, A.: Mixed Hodge structures on punctured neighborhoods. Duke Math. J. 50, 1017–1040 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    El Zein, F.: Mixed Hodge structures. Trans. AMS 275, 71–106 (1983)MathSciNetCrossRefGoogle Scholar
  5. [5]
    Hain, R.: The de Rham homotopy theory of complex algebraic varieties, I. To appear.Google Scholar
  6. [6]
    Navarro Aznar, V.: Sur la théorie de Hodge des variétés algébriques à singularités isolées, 1983Google Scholar
  7. [7]
    Steenbrink, J.: Mixed Hodge structures associated with isolated singularities. In: Singularities, Proc. Symp. Pure Math 40(2), 513–536 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Zucker, S.: Hodge theory with degenerating coefficients: L2 cohomology in the Poincaré metric. Ann. Math. 109, 415–476 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Zucker, S.: Degeneration of Hodge bundles (after Steenbrink). In: Topics in Transcendental Algebraic Geometry. Ann. Math. Studies 106, 121–141 (1984)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Richard M. Hain
    • 1
  • Steven Zucker
    • 2
  1. 1.Department of MathematicsUniversity of WashingtonSeattleUSA
  2. 2.Department of MathematicsThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations