Entropie, theoremes limite et marches aleatoires

  • Y. Derriennic
Survey Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1210)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    AVEZ A (1972)-Entropie des groupes de type fini C R Acad Sc Paris 275 A 1363–1366MathSciNetMATHGoogle Scholar
  2. [2]
    AVEZ A (1974)-Théorème de Choquet-Deny pour les groupes à croissance non exponentielle C R Acad Sc Paris 279 A, 25–28MathSciNetMATHGoogle Scholar
  3. [3]
    AVEZ A (1976)-Croissance des groupes de type fini et fonctions harmoniques L N in Math Springer no 532, 35–49Google Scholar
  4. [4]
    AVEZ A (1976)-Harmonic functions on groups Diff Geom and Relativity 27–32, Reidel (Holland)Google Scholar
  5. [5]
    AZENCOTT R (1970)-Espaces de Poisson des groupes localement compacts L N in Math Springer no148Google Scholar
  6. [6]
    BROWN L (1982)-A proof of the central limit theorem motivated by the Carmer-Rao inequality Statistics and Proba: essays in honor of C R Rao North Holland 141–148Google Scholar
  7. [7]
    CSISZAR I. (1964)-A note on limiting distributions on topological groups Publ Math Inst Hung Acad Sc Vol 9, 595–598MathSciNetMATHGoogle Scholar
  8. [8]
    DERRIENNIC Y (1976)-Lois "zéro ou deux" pour les processus de Markov Ann Inst H Poincaré, Sect B, 12, 111–129MathSciNetMATHGoogle Scholar
  9. [9]
    DERRIENNIC Y (1980)-Quelques applications du théorème ergodique sous-additif. Astérisque 74, 183–201MathSciNetMATHGoogle Scholar
  10. [10]
    DERRIENNIC Y (1985)-Entropie et frontière d'une marche aléatoire: le cas général Probabilités sur les structures géométriques Publications de l'Université Paul Sabatier, Toulouse.Google Scholar
  11. [11]
    DOBRUSHIN R.L. (1959)-General formulation of Shannon's basic theorems of the theory of information. Usp Math Nauk, 14, n5 6, 3–104 Traduction allemande: VEB Deutscher Verlag der Wissenschaften Berlin 1963Google Scholar
  12. [12]
    DYNKIN E. B et MALJUTOV M. B. (1961)-Random walks on groups with a finite number of generators. Soviet Math Dokl 2, 399–402MathSciNetGoogle Scholar
  13. [13]
    ELIE L. (1978)-Fonctions harmoniques positives sur les groupe affine L.N. in Math Springer no 706 96–110.Google Scholar
  14. [14]
    FELLER W. (1966)-An introduction to probability theory Vol II (Wiley)Google Scholar
  15. [15]
    FDURT G (1972)-Existence de mesures à puissances singulières à toutes leurs translatées. C.R. Acad Sc Paris, 274 A, 648–650MATHGoogle Scholar
  16. [16]
    FÜRSTENBERG H. (1963)-Non communicating random products. T.A.M.S. 108, 377–428CrossRefMATHGoogle Scholar
  17. [17]
    FÜRSTENBERG H. (1971)-Random walks and discrete subgroups of Lie groups. Adv Proba Vol 1, 3–63 (Dekker)MATHGoogle Scholar
  18. [18]
    GREENLEAF F.P. (1969)-Invariant means on topological groups. Van Nostrand.Google Scholar
  19. [19]
    GRIGORCHUK R. (1983)-On Milnor's problem of group growth Soviet Math. Dokl 28, no 1, 23–26MathSciNetMATHGoogle Scholar
  20. [20]
    GROMOV M. (1981)-Groups of polynomial growth and expanding maps Publ Math IHES, 53, 53–78MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    QUIVARC'H Y. (1973)-Croissance polynomiale et période des fonctions harmoniques Bull SMF, 101, 333–379.Google Scholar
  22. [22]
    QUIVARC'H Y. (1980)-Sur la loi des grands nombres. Astérisque, 74, 47–98.Google Scholar
  23. [23]
    QUIVARC'H Y. (1980)-Quelques propriétés asymptotiques des produits de matrices aléatoires L N in Math, Springer, no 774, 177–250.Google Scholar
  24. [24]
    KAIMANOVIC'H V.A. et VERSHIK A.M. (1979)-Random walks on groups: boundary, entropy, uniform districution. Soviet Math. Dokl. 20, 1170–1173.Google Scholar
  25. [25]
    KAIMANOVICH V.A. et VERSHIK A.M. (1983)-Random walks on discrete groups: boundary and entropy The annals of Proba Vol 11, no 3, 457–490.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    KAIMANOVICH V.A. (1982)-The differential entropy of the boundary of a random walk on a group Russian Math SurveysGoogle Scholar
  27. [27]
    KAIMANOVICH V.A. (1985)-An entropy criterion for maximality of the boundary of random walks on discrete groups Soviet Math Dokl Vol 31, no 1, 193–197MathSciNetGoogle Scholar
  28. [28]
    LEDRAPPIER F. (1983)-Une relation entre entropie, dimension et exposant pour certaines marches aléatoires C R Acad Sc Paris 296 A, 369–372MathSciNetMATHGoogle Scholar
  29. [29]
    LEDRAPPIER F. (1985)-Poisson boundaries of discrete groups of matrices Israel J. of Math. Vol 50, no 4, 319–336MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    LINNIK Yu. V. (1959)-An information-theoretic proof of the central limit theorem with the Lindeberg condition Theory of Probability and its applications. Vol IV, no 3, 288–299.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    PINSKER M.S. (1964)-Information and information stability of random variables and processes. Holden-DayGoogle Scholar
  32. [32]
    RENYI A. (1967)-Calcul des probabilités, DUNODGoogle Scholar
  33. [33]
    ROSENBLATT J. (1981)-Ergodic and mixing random walks on locally compact groups Math. Ann. 257, 31–42.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    SHANNON C.E. (1949)-The mathematical theory of communication The University of Illinois PressGoogle Scholar
  35. [35]
    VAROPOULOS N.T. (1986)-Théorie du potentiel sur des variétés C.R Acad. Sc. Paris t 382, série I, no 6, 203–205 (et les références du même auteur qui y sont indiquées).MathSciNetMATHGoogle Scholar
  36. [36]
    BARRON A.R. (1986)-Entropy and the central limit theorem The Annals of Probability Vol 14, no 1, 336–342MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Y. Derriennic
    • 1
    • 2
  1. 1.Universite de Bretagne OccidentaleBrestFrance
  2. 2.Faculté des SciencesBrest CedexFrance

Personalised recommendations