The use of packing measure in the analysis of random sets

  • S. James Taylor
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1203)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. J. Adler, The geometry of random fields, Wiley, 1980Google Scholar
  2. [2]
    K. J. Falconer, The geomtry of fractal sets, Cambridge Press, 1985.Google Scholar
  3. [3]
    B. B. Fristedt, Upper functions for symmetric processes with stationary independent movements, Indiana Math J. 21 (1971), 177–185.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    B. F. Fristedt and S. J. Taylor, The exact packing measure for the trajectory of a subordinator (in preparation).Google Scholar
  5. [5]
    J. Hawkes, Hausdorff measure, entropy, and the independence of small sets, Proc. Lon. Math. Soc. 28 (1974), 700–724.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    W. J. Hendricks, A uniform lower bound for Hausdorff dimension for transient symmetric Lévy processes, Annals of Prob. 11 (1984), 589–592.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    B. B. Mandelbrot, The fractal geometry of nature, Freeman, 1982.Google Scholar
  8. [8]
    W. E. Pruitt, The Hausdorff dimension of the range of a process with stationary independent increments. Jour. Math. and Mechanics 19 (1969), 371–378.MathSciNetMATHGoogle Scholar
  9. [9]
    W. E. Pruitt and S. J. Taylor, Sample path properties of processes with stable components, Z. Wahrscheinlichkeits-theorie, 12 (1969), 267–289.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    W. E. Puritt and S. J. Taylor, The packing dimension of the trajectory of a Lévy process (in preparation).Google Scholar
  11. [11]
    S. J. Taylor and C. Tricot, Packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679–699.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • S. James Taylor
    • 1
  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations