Sur l'image d'une variété kählérienne compacte

  • J. Varouchas
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1188)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BARLET D.: Espace analytique réduit des cycles analytiques complexes de dimension finie. Séminaire F. Norguet, Lecture Notes 482, Springer (1975) p. 1–158.Google Scholar
  2. [2]
    BARLET D.: Familles analytiques de cycles et classes fondamentales relatives. Séminaire F. Norguet, Lecture Notes 807, Springer (1977–79) p. 1–24.Google Scholar
  3. [3]
    BARLET D.: Convexité de l'espace des cycles. Bull. Soc. Math. de France 106 (1978) p. 373–397.MathSciNetMATHGoogle Scholar
  4. [4]
    BARLET D.: Convexité au voisinage d'un cycle. Séminaire F. Norguet, Lecture Notes 807, Springer, p. 102–121.Google Scholar
  5. [5]
    BARLET D.: Majoration du volume des fibres génériques et forme géométrique du Théorème d'aplatissement. Séminaire P. Lelong — H. Skoda,1978–79 Lecture Notes Springer 822, p. 1–17.Google Scholar
  6. [6]
    CAMPANA F.: Application de l'espace des cycles à la classification biméromorphe des espaces kählériens compacts. Institut Elie Cartan (Nancy 1980).Google Scholar
  7. [7]
    FORNAESS J.E.-NARASIMHAN R.: The Levi Problem on Complex Spaces with Singularities. Math. Annalen 248 (1980) p. 47–72.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    FUJIKI A.: Closedness of the Douady Space of compact Kähler spaces. Publ. RIMS, Kyoto 14 (1978) p. 1–52.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    FUJIKI A.: On automorphism groups of compact Kähler manifolds. Inventiones Math. 44 (1978) p. 225–258.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    FUJIKI A.: Kählerian normal complex surfaces. Tohôku Math. Journal 35 (1983) p. 101–117.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    FUJIKI A.: On a complex manifold in C without holomorphic 2-forms Publ. RIMS Kyoto 19 (1983) p. 193–202.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    HIRONAKA H.: Resolution of Singularities. Annals of Math. 13 (1964).Google Scholar
  13. [13]
    HIRONAKA H.: Flattening Theorem in Complex-Analytic geometry. American Journal of Mathematics 97 (1975) p. 503–547.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    HIRONAKA H.: Fundamental problems on Douady Spaces. Report at the symposium at Kinosaki, 1977 p. 253–261.Google Scholar
  15. [15]
    LIEBERMAN D.: Compactness of the Chow scheme. Séminaire F. Norguet, Lecture Notes 670, Springer (1976) p. 140–185.Google Scholar
  16. [16]
    MIYAOKA Y.: Extension theorems of Kähler metrics. Proc. Japan Academy 50 (1974) p. 407–410.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    RICHBERG R.: Stetige Streng Pseudokonvexe Funktionen. Math. Annalen 175 (1968) p. 257–286.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    SIU Y.T.: Every Stein subvariety has a Stein neighborhood. Inventiones Math. 38 (1976) p. 89–100.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    UENO K.: Classification theory of algebraic varieties and compact complex spaces. Lecture Notes 439, Springer (1975).Google Scholar
  20. [20]
    VAROUCHAS J.: Stabilité de la classe des variétés kählériennes par certains morphismes propres (à paraître).Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. Varouchas

There are no affiliations available

Personalised recommendations