The gauge and conditional gauge theorem

  • K. L. Chung
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1123)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aizenman, N., Simon, B.: Brownian motion and Harnack inequality for Schrődinger operators, Comm. Pure Appl. Math. 35 (1982), 209–273.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Chung, K.L.: On stopped Feynman-Kac functionals, Séminaire de Probabilités XIV, 1978/79, Lecture Notes in Mathematics No. 784, Springer-Verlag.Google Scholar
  3. [3]
    Chung, K.L., Rao, K.M.: Feynman-Kac functional and Schrődinger equation, Seminar on Stochastic Processes 1, 1–29, Birkhäuser 1981.MathSciNetMATHGoogle Scholar
  4. [4]
    Chung, K.L.: Conditional gauges, Seminar on Stochastic Processes 3, 1983.Google Scholar
  5. [5]
    Falkner, N.: Feynman-Kac functionals and positive solutions of ½Δu+qu=0, Z. Wahrsch. Verw. Gebiete 65 (1983), 19–33.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Zhao, Z.: Conditional gauge with unbounded potential, Z. Wahrsch. Verw. Gebiete 65 (1983), 13–18.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Zhao, Z.: Uniform boundedness of conditional gauge and Schrődinger equations, Comm. Math. Phys 93 (1984), 19–31.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. L. Chung

There are no affiliations available

Personalised recommendations