The gauge and conditional gauge theorem

  • K. L. Chung
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1123)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aizenman, N., Simon, B.: Brownian motion and Harnack inequality for Schrődinger operators, Comm. Pure Appl. Math. 35 (1982), 209–273.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Chung, K.L.: On stopped Feynman-Kac functionals, Séminaire de Probabilités XIV, 1978/79, Lecture Notes in Mathematics No. 784, Springer-Verlag.Google Scholar
  3. [3]
    Chung, K.L., Rao, K.M.: Feynman-Kac functional and Schrődinger equation, Seminar on Stochastic Processes 1, 1–29, Birkhäuser 1981.MathSciNetMATHGoogle Scholar
  4. [4]
    Chung, K.L.: Conditional gauges, Seminar on Stochastic Processes 3, 1983.Google Scholar
  5. [5]
    Falkner, N.: Feynman-Kac functionals and positive solutions of ½Δu+qu=0, Z. Wahrsch. Verw. Gebiete 65 (1983), 19–33.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Zhao, Z.: Conditional gauge with unbounded potential, Z. Wahrsch. Verw. Gebiete 65 (1983), 13–18.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Zhao, Z.: Uniform boundedness of conditional gauge and Schrődinger equations, Comm. Math. Phys 93 (1984), 19–31.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • K. L. Chung

There are no affiliations available

Personalised recommendations