L-functions in geometry and some applications

  • Toshikazu Sunada
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1201)


Conjugacy Class Fundamental Group Zeta Function Homology Class Trace Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Adachi and T. Sunada: Homology of closed geodesics in a negatively curved manifold, preprint.Google Scholar
  2. 2.
    T. Adachi and T. Sunada: L-functions of dynamical systems and topological graphs, preprint.Google Scholar
  3. 3.
    T. Adachi: Closed orbits of an Anosov flow and the fundamental group, preprint.Google Scholar
  4. 4.
    R. Bowen: Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. Brooks: The first eigenvalue in a tower of coverings, preprint.Google Scholar
  6. 6.
    R. Brooks: Combinatorial problems in spectral geometry, preprint.Google Scholar
  7. 7.
    D. Fried: Flow equivalence, hyperbolic systems and a new zeta function for flows, Comment. Math. Helvetici 57 (1982), 237–259.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D. Fried: The zeta functions of Ruelle and Selberg I, preprint.Google Scholar
  9. 9.
    D. Fried: Analytic torsion and closed geodesics on hyperbolic manifolds, preprint.Google Scholar
  10. 10.
    R. Gangolli: Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one, III. J. Math. 21 (1977), 1–42.MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Gromov: Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1–147.MathSciNetzbMATHGoogle Scholar
  12. 12.
    D. A. Hejhal: The Selberg trace formula and the Riemann zeta function, Duke Math. J. 43 (1976), 441–482.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. A. Hejhal: The Selberg Trace Formula for PSL (2, ℝ), I. Springer Lecture Notes 548, 1976.Google Scholar
  14. 14.
    Y. Ihara: On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219–235.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    S. Iyanaga and Y. Kawada (ed.): Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge, 1977.Google Scholar
  16. 16.
    A. Katsuda: Homology of closed geodesics in a nonpositively curved manifold of rank one, preprint.Google Scholar
  17. 17.
    N. Kurokawa: On some Euler products. I, Proc. Japan Acad. 60 (1984) 335–338.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    N. Kurokawa: On some Euler products. II, Proc. Japan Acad. 60 (1984), 365–368.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    S. Lang: Algebraic Number Theory, Addison-Wesley, 1970.Google Scholar
  20. 20.
    A. Manning: Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215–220.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. P. McKean: Selberg's trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math. 25 (1972), 225–246.MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Pansu: Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergod. Th. Dynam. Sys. 3 (1983), 415–445.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    W. Parry and M. Pollicott: An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. 118 (1983), 573–591.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    W. Parry and M. Pollicott: The Chebotarev theorem for Galois coverings of Axiom A flows, preprint.Google Scholar
  25. 25.
    M. Pollicott: Meromorphic extensions of generalized zeta functions, preprint.Google Scholar
  26. 26.
    D. Ruelle: Thermodynamic Formalism, Addison-Weasley, Reading, Mass., 1978.zbMATHGoogle Scholar
  27. 27.
    D. Ruelle: Zeta functions for expanding maps and Anosov flows, Invent. Math. 34 (1976), 231–242.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    P. Sarnak: Prime geodesic theorems, Ph. D. dissertation, Stanford University (1980).Google Scholar
  29. 29.
    A. Selberg: Harmonic analysis and discontinuous subgroups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47–87.MathSciNetzbMATHGoogle Scholar
  30. 30.
    J. P. Serre: Tree, Springer New York 1980.CrossRefGoogle Scholar
  31. 31.
    S. Smale: Differentiable dynamical systems, Bull. AMS. 73 (1967), 747–817.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    T. Sunada: Geodesic flows and geodesic random walks, Advanced Studies in Pure Math. 3 (Geometry of Geodesics and Related Topics) (1984), 47–86.Google Scholar
  33. 33.
    T. Sunada: Riemannian coverings and isospectral manifolds, Ann. of Math. 121 (1985), 169–186.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    T. Sunada: Number theoretic methods in spectral geometry, to appear in Proc. The 6th Symp. on Differential Geometry and Differential Equations held at Shanghai, China 1985.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Toshikazu Sunada
    • 1
  1. 1.Department of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations