On deformation of Riemannian metrics and manifolds with positive curvature operator

  • Seiki Nishikawa
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1201)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Bando, On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature, J. Differential Geometry, 19(1984), 283–297.MathSciNetMATHGoogle Scholar
  2. [2]
    S. Bando, Curvature operators and eigenvalue problems, informal notes (in Japanese).Google Scholar
  3. [3]
    M. Berger, Sur les variétés à opérateur de courbure positif, Comptes rendus, 253(1961), 2832–2834.MATHGoogle Scholar
  4. [4]
    J.P. Bourguignon and H. Karcher, Curvature operators: pinching estimates and geometric examples, Ann. Sci. Ec. Norm. Sup., 11 (1978), 71–92.MathSciNetMATHGoogle Scholar
  5. [5]
    D.M. Deturck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geometry, 18(1983), 157–162.MathSciNetMATHGoogle Scholar
  6. [6]
    R.S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc., 7(1982), 65–222.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17(1982), 255–306.MathSciNetMATHGoogle Scholar
  8. [8]
    R.S. Hamilton, Four-manifolds with positive curvature operator, preprint.Google Scholar
  9. [9]
    G. Huisken, Ricci deformation of the metric on a Riemannian manifold, preprint.Google Scholar
  10. [10]
    T. Kashiwada, On the curvature operator of second kind, preprint.Google Scholar
  11. [11]
    N. Koiso, On the second derivative of the total scalar curvature, Osaka J. Math., 16(1979), 413–421.MathSciNetMATHGoogle Scholar
  12. [12]
    C. Margerin, Some results about the positive curvature operators and point-wise δ (n)-pinched manifolds, informal notes.Google Scholar
  13. [13]
    D. Meyer, Sur les variétés riemanniennes à opérateur de courbure positif, Comptes rendus, 272(1971), 482–485.MATHGoogle Scholar
  14. [14]
    Y. Muto, On Einstein metrics, J. Differential Geometry, 9(1974), 521–530.MathSciNetMATHGoogle Scholar
  15. [15]
    S. Nishikawa, Deformation of Riemannian metrics and manifolds with bounded curvature ratios, to appear in Proc. Symp. Pure Math., 1985.Google Scholar
  16. [16]
    K. Ogiue and S. Tachibana, Les variétés riemanniennes dont l'opérateur de courbure restreint est positif sont des sphères d'homologie réelle, Comptes rendus, 289(1979), 29–30.MathSciNetMATHGoogle Scholar
  17. [17]
    E.A. Ruh, Riemannian manifolds with bounded curvature ratios, J. Differential Geometry, 17(1982), 643–653.MathSciNetMATHGoogle Scholar
  18. [18]
    Y.T. Siu, Complex-analyticity of harmonic maps, vanishing and Lefschetz theorems, J. Differential Geometry, 17(1982), 55–138.MathSciNetMATHGoogle Scholar
  19. [19]
    S. Tachibana, A theorem on Riemannian manifolds of positive curvature operator, Proc. Japan Acad., 50(1974), 301–302.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Seiki Nishikawa
    • 1
  1. 1.Department of MathematicsKyushu University 33FukuokaJapan

Personalised recommendations