On the subalgebra generated by the one-dimensional elements in the Yoneda ext-algebra

  • Clas Löfwall
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1183)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. ANDRÉ, Hopf algebras with divided powers, J. Algebra 18 (1971), 19–50.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    L.L. AVRAMOV, On the Hopf algebra of a local ring, Izvestija Akad. Nauk SSSR ser. mat. 38 (1974), 253–277.MathSciNetMATHGoogle Scholar
  3. [3]
    J. BACKELIN, A distributiveness property of augmented algebras, and some related homological results, part of thesis, Stockholm 1982 (defended January 21, 1983).Google Scholar
  4. [4]
    H. CARTAN, Homologie et cohomologie d'une algèbre graduée, Séminaire Henri Cartan, 11e année 58/59, exposé 15.Google Scholar
  5. [5]
    R. FRÖBERG, Determination of a class of Poincaré series, Math.Scand. 37 (1975), 29–39.MathSciNetMATHGoogle Scholar
  6. [6]
    T.H. GULLIKSEN, G. LEVIN, Homology of local rings, Queenś Paper No. 20, Queen's University, Kingston, Ontario, (1969).MATHGoogle Scholar
  7. [6']
    T.H. GULLIKSEN, On the Hilbert series of the homology of differential graded algebras, Math. Scand., 46 (1980), 15–22.MathSciNetMATHGoogle Scholar
  8. [7]
    G. LEMAIRE, Algèbres connexes et Homologie des Espaces de Lacets, Lecture Notes in Mathematics, No. 422, Springer Verlag, Berlin, 1974.MATHGoogle Scholar
  9. [8]
    G. LEVIN, Local rings and Golod homomorphisms, J. Algebra 37 (1975), 266–289.MathSciNetCrossRefMATHGoogle Scholar
  10. [9]
    G. LEVIN, Two conjectures in the homology of local rings, J Algebra 30 (1974), 56–74.MathSciNetCrossRefMATHGoogle Scholar
  11. [10]
    C. LÖFWALL, The Poincaré series for a class of local rings, Preprint series, University of Stockholm, No. 8, 1975.Google Scholar
  12. [11]
    J.W. MILNOR, J.C. MOORE, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211–264.MathSciNetCrossRefMATHGoogle Scholar
  13. [12]
    S. PRIDDY, Koszul resolutions, Trans. A.M.S. 152 (1970), 39–60.MathSciNetCrossRefMATHGoogle Scholar
  14. [13]
    J.-E. ROOS, Relations between the Poincaré-Betti series of loop spaces and of local rings, Lecture Notes in Math., 740, Springer-Verlag, Berlin, 1979.MATHGoogle Scholar
  15. [14]
    J-P. SERRE, Algèbre locale multiplicités, Lecture notes in Mathematics, No. 11, 3 ed., Springer Verlag, Berlin, 1975.MATHGoogle Scholar
  16. [15]
    G. SJÖDIN, A set of generators for ExtR(k,k), Math. Scand., 38 (1976), 1–12.Google Scholar
  17. [16]
    G. SJÖDIN, Hopf algebras and derivations, J. Algebra, 64 (1980), 218–229.MathSciNetCrossRefMATHGoogle Scholar
  18. [17]
    G. SJÖDIN, A characterization of local complete intersections in terms of the Ext-algebra, J. Algebra, 64 (1980), 214–217.MathSciNetCrossRefMATHGoogle Scholar
  19. [18]
    G. SJÖDIN, The Ext-algebra of a Golod ring, Journal of Pure and Applied Algebra, 38, 1985, 337–351.MathSciNetCrossRefMATHGoogle Scholar
  20. [19]
    L. SMITH, Split extensions of Hopf algebras and semi-tensor products, Math. Scand. 26 (1970), 17–41.MathSciNetMATHGoogle Scholar
  21. [20]
    H. WIEBE, Über homologische invarianten lokaler ringe, Math. Ann. 179 (1969), 257–274.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Clas Löfwall
    • 1
  1. 1.Department of MathematicsUniversity of StockholmStockholmSweden

Personalised recommendations