Involutions and isotopies of lens spaces

  • Craig Hodgson
  • J. H. Rubinstein
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1144)


In this paper we study the topology of the three-dimensional lens spaces by regarding them as two-fold branched coverings. The main result obtained is a classification of the smooth involutions on lens spaces having one-dimensional fixed point sets. We show that each such involution is conjugate, by a diffeomorphism isotopic to the identity, to an isometry of the lens space (given the standard spherical metric).

Using this classification of involutions, we deduce that genus one Heegaard splittings of lens spaces are unique up to isotopy. We apply this result to give a new proof of the classification of lens spaces up to diffeomorphism. We also compute the group of isotopy classes of diffeomorphisms of each lens space.


Homology Class Orbit Space Morse Function Lens Space Isotopy Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    J.W. ALEXANDER, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), 370–372.MathSciNetCrossRefMATHGoogle Scholar
  2. [As]
    K. ASANO, Homeomorphisms of prism manifolds, Yokohama Math. J. 26 (1978), 19–25.MathSciNetMATHGoogle Scholar
  3. [BGM]
    J.S. BIRMAN, F. GONZALEZ-ACUÑA and J.M. MONTESINOS, Minimal Heegaard splittings of 3-manifolds are not unique, Michigan Math. J. 23 (1976), 97–103.MathSciNetCrossRefMATHGoogle Scholar
  4. [BH]
    J.S. BIRMAN and H. HILDEN, Heegaard splittings of branched coverings of S3, Trans. Amer. Math. Soc. 213 (1975), 315–352.MathSciNetMATHGoogle Scholar
  5. [BR]
    J.S. BIRMAN and J.H. RUBINSTEIN, Homeotopy groups of some non-Haken 3-manifolds, to appear. (See also: Abstracts Amer. Math. Soc. 1 (1980), 773-57-13, 136.)Google Scholar
  6. [Bo]
    F. BONAHON, Diffeotopies des espaces lenticulaires, preprint.Google Scholar
  7. [BO]
    F. BONAHON and J-P OTAL, Scindements de Heegaard des espaces lenticulaires, preprint.Google Scholar
  8. [Br]
    G.E. BREDON, Introduction to compact transformation groups, Academic Press, New York and London, 1972.MATHGoogle Scholar
  9. [Bro]
    E.J. BRODY, The topological classification of the lens spaces, Ann. of Math. 71 (1960), 163–184.MathSciNetCrossRefMATHGoogle Scholar
  10. [BL]
    W. BROWDER and G.R. LIVESAY, Fixed point free involutions on homotopy spheres, Bull. Amer. Math. Soc. 73 (1967), 242–245.MathSciNetCrossRefMATHGoogle Scholar
  11. [Ce 1]
    J. CERF, Sur les difféomorphismes de la sphere de dimension trois (Γ4=0), Lecture Notes in Math., Vol. 53, Springer-Verlag, Berlin and New York, 1968.CrossRefMATHGoogle Scholar
  12. [Ce 2]
    J. CERF, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. No. 39 (1970), 5–173.Google Scholar
  13. [DK]
    A. DURFEE and L. KAUFFMAN, Periodicity of branched cyclic covers, Math. Ann. 218 (1975), 157–174.MathSciNetCrossRefMATHGoogle Scholar
  14. [Eng]
    R. ENGMANN, Nicht homöomorphe Heegaard Zerlegungen vom Geschlecht 2 der zusammenhängenden Summe zweier Linsenräume, Abh. Math. Sem. Univ. Hamburg 35 (1970), 33–38.MathSciNetCrossRefMATHGoogle Scholar
  15. [Ep]
    D.B.A. EPSTEIN, Curves on 2-manifolds and isotopies, Acta Math. 115 (1966) 83–107.MathSciNetCrossRefMATHGoogle Scholar
  16. [F]
    R.H. FOX, A note on branched cyclic coverings of spheres, Rev. Mat. Hisp.-Amer. 32 (1972), 158–166.MathSciNetMATHGoogle Scholar
  17. [Fr]
    W. FRANZ, Über die Torsion einer Überdeckung, J.f. reine u. angewandte Math. 173 (1935), 245–253.MathSciNetMATHGoogle Scholar
  18. [GG]
    M. GOLUBITSKY and V. GUILLEMIN, Stable mappings and their singularities, Springer-Verlag, New York, Heidelberg and Berlin, 1973.CrossRefMATHGoogle Scholar
  19. [GL]
    C. McA. GORDON and R.A. LITHERLAND, Incompressible surfaces in branched coverings, to appear.Google Scholar
  20. [H]
    W. HAKEN, Some results on surfaces in 3-manifolds, in: Studies in modern topology, M.A.A. Studies in Math. Vol. 5, M.A.A., Englewood Cliffs, N.J. (1968), 39–98.Google Scholar
  21. [Ha]
    R.S. HAMILTON, Three manifolds with positive Ricci curvature, J. of Diff. Geom 17 (1982), 255–306.MathSciNetMATHGoogle Scholar
  22. [Ham]
    M.-E. HAMSTROM, Homotopy in homeomorphism spaces, TOP and PL. Bull. Amer. Math. Soc. 80 (1974), 207–230.MathSciNetCrossRefMATHGoogle Scholar
  23. [Har]
    R.I. HARTLEY, Knots and involutions, Math. Zeitschr. 171 (1980), 175–185.MathSciNetCrossRefMATHGoogle Scholar
  24. [Hat 1]
    A. HATCHER, Homeomorphisms of sufficiently large p2-irreducible 3-manifolds, Topology 15 (1976), 343–347.MathSciNetCrossRefMATHGoogle Scholar
  25. [Hat 2]
    A. HATCHER, A proof of the Smale Conjecture, Diff(S3)≃O(4), Ann. of Math. 117 (1983), 553–607.MathSciNetCrossRefMATHGoogle Scholar
  26. [He]
    W. HEIL, On P2-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772–775.MathSciNetCrossRefMATHGoogle Scholar
  27. [Hem]
    J. HEMPEL, 3-manifolds, Annals of Math. Studies No. 86, Princeton Univ. Press, Princeton, N.J., 1976.MATHGoogle Scholar
  28. [Hi]
    H. HILDEN, Every closed orientable 3-manifold is a 3-fold branched covering space of S3, Bull. Amer. Soc. 80 (1974), 1243–1244.MathSciNetCrossRefMATHGoogle Scholar
  29. [Hir]
    M.W. HIRSCH, Differential topology, Springer-Verlag, New York, Heidelberg and Berlin, 1976.CrossRefMATHGoogle Scholar
  30. [Iv 1]
    N.V. IVANOV, Diffeomorphism groups of Waldhausen manifolds, J. Soviet Math. 12 (1979), 115–118. (English translation of: Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 66 (1976), 172–176.)CrossRefMATHGoogle Scholar
  31. [Iv 2]
    N.V. IVANOV, Homotopy of spaces of automorphisms of some three-dimensional manifolds, Soviet Math. Dokl. 20 (1979), 47–50. (English translation of: Dokl. Akad. Nauk. SSSR 244 (1979), 274–277.)MATHGoogle Scholar
  32. [J]
    W. JACO, Lectures on three-manifold topology, CBMS Regional Conference Series in Math., No. 43, Amer. Math. Soc., Providence R.I., 1980.MATHGoogle Scholar
  33. [Jah]
    B. JAHREN, One-parameter families of spheres in 3-manifolds, Ph.D. thesis, Princeton Univ., 1975.Google Scholar
  34. [K 1]
    P.K. KIM, PL involutions on lens spaces and other 3-manifolds, Proc. Amer. Math. Soc. 44 (1974), 467–473.MathSciNetMATHGoogle Scholar
  35. [K 2]
    P.K. KIM, Cyclic actions on lens spaces, Trans. Amer. Math. Soc. 237 (1978), 121–144.MathSciNetCrossRefMATHGoogle Scholar
  36. [K 3]
    P.K. KIM, Involutions on Klein spaces M(p,q), Notices Amer. Math. Soc. 25 (1978), abstract 752-57-12, A-147.Google Scholar
  37. [KT]
    P.K. KIM and J.L. TOLLEFSON, Splitting the PL involutions of nonprime 3-manifolds, Michigan Math. J. 27 (1980), 259–274.MathSciNetCrossRefMATHGoogle Scholar
  38. [Ki]
    R. KIRBY, Problems in low dimensional manifold theory, Proc. Sympos. Pure Math., vol. 32, part 2, Amer. Math. Soc., Providence R.I., 1978, 273–312.Google Scholar
  39. [Kw 1]
    K.W. KWUN, Scarcity of orientation-reversing PL involutions of lens spaces, Michigan Math. J. 17 (1970), 355–358.MathSciNetCrossRefMATHGoogle Scholar
  40. [Kw 2]
    K.W. KWUN, Sense-preserving PL involutions of some lens spaces, Michigan Math. J. 20 (1973), 73–77.MathSciNetCrossRefMATHGoogle Scholar
  41. [La]
    F. LAUDENBACH, Topologie de la dimension trois: homotopie et isotopie, Astérisque No. 12, Soc. Math de France, Paris, 1974.MATHGoogle Scholar
  42. [M 1]
    D. McCULLOUGH, Homotopy groups of the space of self-homotopy-equivalences, Trans. Amer. Math. Soc. 264 (1981), 151–163.MathSciNetCrossRefMATHGoogle Scholar
  43. [M 2]
    D. McCULLOUGH, The group of homotopy euqivalences for a connected sum of closed aspherical manifolds, Indian Univ. Math. J. 30 (1981), 249–260.MathSciNetCrossRefMATHGoogle Scholar
  44. [Mi 1]
    J.W. MILNOR, Morse theory, Annals of Math. Studies No. 51, Princeton Univ. Press, Princeton N.J., 1963.CrossRefMATHGoogle Scholar
  45. [Mi 2]
    J.W. MILNOR, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.MathSciNetCrossRefMATHGoogle Scholar
  46. [Moi]
    E.E. MOISE, Affine structures in 3-manifolds IV, V. Piecewise linear approximations of homeomorphisms. The triangulation theorem and Hauptvermutung, Ann. of Math. 55 (1952), 215–222; ibid. 56 (1952), 96–114.MathSciNetCrossRefMATHGoogle Scholar
  47. [Mon 1]
    J.M. MONTESINOS, A representation of closed, orientable 3-manifolds as 3-fold branched coverings of S3, Bull. Amer. Math. Soc. 80 (1974) 845–846.MathSciNetCrossRefMATHGoogle Scholar
  48. [Mon 2]
    J.M. MONTESINOS, Minimal plat presentations of prime knots and links are not unique, Canad. J. Math. 28 (1976), 161–167.MathSciNetCrossRefMATHGoogle Scholar
  49. [Mon 3]
    J.M. MONTESINOS, Revêtements ramifiés de noeuds, espace fibrés de Seifert et scindements de Heegaard, preprint. To appear in Astérisque.Google Scholar
  50. [My]
    R. MYERS, Free involutions on lens spaces, Topology 20 (1981), 313–318.MathSciNetCrossRefMATHGoogle Scholar
  51. [Ne]
    M. NEWMAN, Integral matrices, Academic Press, New York and London, 1972.MATHGoogle Scholar
  52. [O]
    P. ORLIK, Seifert manifolds, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1972.MATHGoogle Scholar
  53. [Re]
    K. REIDEMEISTER, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), 102–109.MathSciNetCrossRefMATHGoogle Scholar
  54. [Ro]
    D. ROLFSEN, Knots and links, Publish or Perish, Berkeley, CA, 1976.MATHGoogle Scholar
  55. [Ru 1]
    J.H. RUBINSTEIN, On 3-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129–137.MathSciNetMATHGoogle Scholar
  56. [Ru 2]
    J.H. RUBINSTEIN, Representations of some 3-manifolds as 2-fold cyclic branched covers of S3, Notices Amer. Math. Soc. 25 (1978), abstract 78T-G7, A-18.Google Scholar
  57. [Ru 3]
    J.H. RUBINSTEIN, Involutions and the homeotopy groups of lens spaces, unpublished manuscript. (See also: Abstracts Amer. Math. Soc. 1 (1980), 773-57-12, 135.)Google Scholar
  58. [Sch]
    H. SCHUBERT, Knoten mit zwei Brücken, Math. Zeitschr. 65 (1956), 133–170.MathSciNetCrossRefMATHGoogle Scholar
  59. [Sei]
    H. SEIFERT, Topology of 3-dimensional fibred spaces, in: H. Seifert and W. Threlfall, A textbook of topology, Academic Press, New York, 1980. (English translation of: Acta Math. 60 (1933), 147–238.)Google Scholar
  60. [Sie]
    L.C. SIEBENMANN, Exercices sur les noeuds rationnels, notes, Orsay 1975. To appear in Astérisque.Google Scholar
  61. [Sp]
    E.H. SPANIER, Algebraic topology, McGraw-Hill, New York, 1966.MATHGoogle Scholar
  62. [St]
    N. STEENROD, The topology of fibre bundles, Princeton Univ. Press, Princeton N.J., 1951.MATHGoogle Scholar
  63. [Th 1]
    W.P. THURSTON, The geometry and topology of 3-manifolds, preprint, Princeton University.Google Scholar
  64. [Th 2]
    W.P. THURSTON, Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. AMS 6 (1982), 357–381.MathSciNetCrossRefMATHGoogle Scholar
  65. [Th 3]
    W.P. THURSTON, Three-manifolds with symmetry, preprint.Google Scholar
  66. [To 1]
    J.L. TOLLEFSON, Involutions on S1×S2 and other 3-manifolds, Trans. Amer. Math. Soc. 183 (1973), 139–152.MathSciNetMATHGoogle Scholar
  67. [To 2]
    J.L. TOLLEFSON, Involutions on Seifert fiber spaces, Pacific J. Math. 74 (1978), 519–529.MathSciNetCrossRefMATHGoogle Scholar
  68. [V 1]
    O. Ja. VIRO, Linkings, Two sheeted branched coverings and braids, Math. U.S.S.R. Sbornik 16 (1972), 222–236. (English translation of: Mat. Sb. 87 (1972), 216–228.)MathSciNetCrossRefMATHGoogle Scholar
  69. [V 2]
    O. Ja. VIRO, Nonprojecting isotopies and knots with homeomorphic coverings, J. Soviet Math. 12 (1979), 86–96. (English translation of: Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 66 (1976), 133–147.)CrossRefMATHGoogle Scholar
  70. [W 1]
    F. WALDHAUSEN, Eine Klasse von 3-dimensionalen Mannifaltigkeiten I, II, Invent. Math. 3 (1967), 308–333; ibid. 4 (1967), 87–117.MathSciNetCrossRefMATHGoogle Scholar
  71. [W 2]
    F. WALDHAUSEN, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1968), 56–88.MathSciNetCrossRefMATHGoogle Scholar
  72. [W 3]
    F. WALDHAUSEN, Über Involutionen der 3-Sphäre, Topology 8 (1969), 81–91.MathSciNetCrossRefMATHGoogle Scholar
  73. [W 4]
    F. WALDHAUSEN, Heegaard Zerlegungen der 3-Sphäre, Topology 7 (1968), 195–203.MathSciNetCrossRefMATHGoogle Scholar
  74. [Wa]
    A.G. WASSERMAN, Equivariant differential topology, Topology 8 (1969), 127–150.MathSciNetCrossRefMATHGoogle Scholar
  75. [Wh]
    J.H.C. WHITEHEAD, On C1-complexes, Ann. of Math. 41 (1940), 809–824.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Craig Hodgson
    • 1
  • J. H. Rubinstein
    • 2
  1. 1.Princeton UniversityPrincetonUSA
  2. 2.University of MelbourneParkvilleAustralia

Personalised recommendations