Components of the locus of singular theta divisors of genus 5

  • Roy Smith
  • Robert Varley
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1124)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-M]
    A. Andreotti and A. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Scuola Norm. Sup. Pisa 21 (1967), 189–238MathSciNetMATHGoogle Scholar
  2. [Ba 1]
    W.L. Baily, Satake’s compactification of Vn, Amer. J. Math. 80 (1958), 348–364.MathSciNetCrossRefMATHGoogle Scholar
  3. [Ba 2]
    W.L. Baily, On the moduli of jacobian varieites, Ann. Math. 71 (1960) 303–314MathSciNetCrossRefMATHGoogle Scholar
  4. [Ba 3]
    W.L. Baily, On the theory of ϑ-functions, the moduli of abelian varieities, and the moduli of curves, Ann. Math. 75 (1962), 342–381.MathSciNetCrossRefMATHGoogle Scholar
  5. [B-M-S]
    H. Bass, J. Milnor, and J.P. Serre, Solution of the congruence subgroup problem for SLn(n≥3) and Sp2n(n≥2), Publ. Math. I.H.E.S. 33 (1967).Google Scholar
  6. [Be 1]
    A. Beauville, Prym varieties and the Schottky problem Inv. Math. 41 (1977), 149–196MathSciNetCrossRefMATHGoogle Scholar
  7. [Be 2]
    A. Beauville, Variétés de Prym et Jacobiennes intermédiaires, Ann. Sci. Ecole Norm. Sup. 10 (1977), 309–391MathSciNetMATHGoogle Scholar
  8. [Bo]
    A. Borel, Stable real cohomology of arithmetic groups II, Manifolds and Lie groups, Birkhauser-Boston, 1981, 21–55.Google Scholar
  9. [Br]
    E. Brieskorn, Die Monodromie der isolierten Singuraritäten von Hyprflächen, Man. Math. 2 (1970), 103–161.MathSciNetCrossRefMATHGoogle Scholar
  10. [B-V]
    D. Burghelea and A. Verona Local homological properties of analytic sets, Man. Math. 7 (1972), 55–66.MathSciNetCrossRefMATHGoogle Scholar
  11. [Ca]
    H. Cartan, Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic Geometry and Topology, A Symposium in Honor of S. Lefschetz, Princeton Univ. Press, 1957, 90–102.Google Scholar
  12. [C-G-J-M]
    C.H. Clemens, P.A. Griffiths, T.F. Jambois, and A.L. Mayer, Seminar on degeneration of algebraic varieties, Institute for Advanced Study, Priceton, Fall 1969.Google Scholar
  13. [Cl 1]
    C.H. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), 215–290.MathSciNetCrossRefMATHGoogle Scholar
  14. [Cl 2]
    C.H. Clemens Double solids, Advances in Math. 47 (1983), 107–230.MathSciNetCrossRefMATHGoogle Scholar
  15. [D-M]
    P. Deligne and D. Mumford, The irreducibility of the space of curves of a given genus, Publ. Math. I.H.E.S. 36 (1969), 75–109.MathSciNetCrossRefMATHGoogle Scholar
  16. [D]
    A. Dold, Lectures on Algebraic Topology, Springer-Verlag, New York, 1972.CrossRefMATHGoogle Scholar
  17. [D-S-V]
    R. Donagi, R. Smith, and R. Varley The branch locus of the Prym map, in preparation.Google Scholar
  18. [Fa]
    H. Farkas, Special divisors and analytic subloci of Teichmueller space, Amer. J. Math. 88 (1966), 881–901.MathSciNetCrossRefMATHGoogle Scholar
  19. [Fr1]
    E. Freitag, Siegelsche Modulfunktionen, Springer Verlag, Heidelberg-New York, 1983.CrossRefMATHGoogle Scholar
  20. [Fr2]
    E. Freitag, Die Irreduzibilität der Schottkyrelation Arch. Math. 40 (1983), 255–259.MathSciNetCrossRefMATHGoogle Scholar
  21. [F-L 1]
    W. Fulton and R. Lazarsfeld, Connectivity and its applications in algebraic geometry, Lecture Notes in Math. 862, Springer-Verlag, New York, 1981, 26–92.MathSciNetCrossRefMATHGoogle Scholar
  22. [F-L 2]
    W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta. Math. 146 (1981), 271–283.MathSciNetCrossRefMATHGoogle Scholar
  23. [Gi]
    B. Giesecke, Simpliziale Zerlegung abzählbarer analytische Räume, Math. Zeit. 83 (1964), 177–213.MathSciNetCrossRefMATHGoogle Scholar
  24. [Gr-Re 1]
    H. Grauert and R. Remmert, Analytische Stellenalgebren Springer-Verlag, New York, 1971CrossRefMATHGoogle Scholar
  25. [Gr-Re 2]
    H. Grauert and R. Remmert, Theory of Stein Spaces Springer Verlag, New York, 1979.CrossRefMATHGoogle Scholar
  26. [G-H]
    P. Griffiths and J. Harris Principles of Algebraic Geometry Wiley, New York, 1978.MATHGoogle Scholar
  27. [Gr]
    A. Grothendieck Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1957), 119–221.MathSciNetMATHGoogle Scholar
  28. [Gu-Ro]
    R.C. Gunning and H. Rossi Analytic Functions of Several Complex Variables Prentice-Hall, Englewood Cliffs, N. J. 1965.MATHGoogle Scholar
  29. [Ha]
    H.A. Hamm, Lokale topologische Eigenschaften komplexer Räume, Math. Ann. 191 (1971), 235–252.MathSciNetCrossRefMATHGoogle Scholar
  30. [Hard]
    R. Hardt, Triangulation of subanalytic sets and proper light holomorphic maps Inv. Math. 38 (1977), 207–217.MathSciNetCrossRefMATHGoogle Scholar
  31. [Hart]
    R. Hartshorne, Algebraic Geometry Springer Verlag, New York, 1977.CrossRefMATHGoogle Scholar
  32. [He]
    S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces Academic Press, New York, 1978.MATHGoogle Scholar
  33. [Hi 1]
    H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79 (1964), 109–326.MathSciNetCrossRefMATHGoogle Scholar
  34. [Hi 2]
    H. Hironaka, Bimeromorphic smoothing of complex analytic spaces Lecture Notes, University of Warwick, England, 1971.MATHGoogle Scholar
  35. [Hi 3]
    H. Hironaka Triangulations of algebraic sets Proc. Symp. Pure Math. 29 (1975), 165–185.MathSciNetCrossRefMATHGoogle Scholar
  36. [I]
    J. Igusa, On the graded ring of theta-constants, Amer. J. Math. 86 (1964), 219–246.MathSciNetCrossRefMATHGoogle Scholar
  37. [K]
    G. Kempf, Schubert methods with an application to algebraic curves, Publ. Math. Centrum, Amsterdam, 1971.Google Scholar
  38. [K-L]
    S. Kleiman and D. Laksov On the existence of special divisors, Amer. J. Math. 93 (1972), 431–436.MathSciNetCrossRefMATHGoogle Scholar
  39. [K-S]
    A. Kas and M. Schlessinger On the versal deformation of a complex space with an isolated singularity, Math. Ann. 196 (1972), 23–29MathSciNetCrossRefMATHGoogle Scholar
  40. [La]
    K. Lamotke, The topology of complex projective varieties after S. Lefschetz, Topology 20 (1981), 15–51.MathSciNetCrossRefMATHGoogle Scholar
  41. [Lo]
    S. Lojasiewicz Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa 18 (1964), 449–474.MathSciNetMATHGoogle Scholar
  42. [Maa]
    H. Maass, Die Multiplikatorsysteme zur Siegelschen Modulgruppe, Nachr. Akad. Wiss. 11, Göttingen, 1964, 125–135.MathSciNetGoogle Scholar
  43. [Macd]
    I.G. Macdonald, Symmetric products of an algebraic curve Topology 1 (1962), 319–343.MathSciNetCrossRefMATHGoogle Scholar
  44. [Mac1]
    S. Maclane, Homology, Springer-Verlag, New York, 1967.MATHGoogle Scholar
  45. [MacP]
    R. MacPherson, Chern classes of singular varieties, Ann. Math. 100 (1974), 423–432.MathSciNetCrossRefMATHGoogle Scholar
  46. [Mas]
    L. Masiewicki, Universal properties of Prym varieties with an application to algebraic curves of genus five, Trans. A.M.S. 222 (1976), 221–240.MathSciNetCrossRefMATHGoogle Scholar
  47. [Math]
    J. Mather, Stability of C-mappings III, finitely determined map-germs, Publ. Math. I.H.E.S, 35 (1968), 127–156.MathSciNetCrossRefMATHGoogle Scholar
  48. [Mats 1]
    T. Matsusaka On a theorem of Torelli, Amer. J. Math. 80 (1958), 784–800.MathSciNetCrossRefMATHGoogle Scholar
  49. [Mats 2]
    T. Matsusaka, On a characterization of a Jacobian variety, Mem. Coll. Sci. Kyoto, Ser. A, 32 (1959), 1–19.MathSciNetMATHGoogle Scholar
  50. [May 1]
    A. Mayer Special divisors and the Jacobian variety, Math. Ann. 153 (1964), 163–167.MathSciNetCrossRefMATHGoogle Scholar
  51. [May 2]
    A. Mayer, Rauch’s variational formula and the heat equation, Math. Ann. 181 (1969), 53–59.MathSciNetCrossRefMATHGoogle Scholar
  52. [Mi]
    J. Milnor Singular Points of Complex Hypersurfaces Annals of Math. Studies 61, Princeton Univ. Press, 1968.Google Scholar
  53. [Mu1]
    D. Mumford, Introduction to Algebraic Geometry Lecture Notes, Harvard Univ., Cambridge, 1967.Google Scholar
  54. [Mu2]
    D. Mumford, Abelian quotients of the Teichmüller modular group, J. d’Anal. Math. 18 (1967), 227–244MathSciNetCrossRefMATHGoogle Scholar
  55. [Mu3]
    D. Mumford, Abelian Varieties Oxford Univ. Press, 1970.Google Scholar
  56. [Mu4]
    D. Mumford, Prym varieties I, Contributions to Analysis, Academic Press, New York, 1974, 325–350.Google Scholar
  57. [Mu5]
    D. Mumford, Curves and Their Jacobians Univ. of Mich. Press, Ann Arbor, 1975.MATHGoogle Scholar
  58. [Mu6]
    D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Springer-Verlag, New York, 1976.MATHGoogle Scholar
  59. [Mu7]
    D. Mumford, Tata Lectures on Theta I, Birkhäuser-Boston, 1983.Google Scholar
  60. [Mu8]
    D. Mumford, On the Kodaira dimension of the Siegel modular variety Lecture Notes in Math. 997, Springer-Verlag, New York, 1983, 348–375.MathSciNetCrossRefMATHGoogle Scholar
  61. [Nam]
    Y. Namikawa A new compactification of the Siegel space and degeneration of abelian varieties I, II, Math. Ann. 221 (1976), 97–141, 201–241.MathSciNetCrossRefMATHGoogle Scholar
  62. [Nar]
    R. Narasimhan, Introduction to the Theory of Analytic Spaces, Lecture Notes in Math. 25, Springer Berlag, New York, 1966.Google Scholar
  63. [O]
    F. Oort, Singularities of coarse moduli schemes, Séminaire d’Algèbre Paul Dubreil, Paris 1975–76, Lecture Notes in Math. 586, Springer Verlag, New York, 1977, 61–76MathSciNetCrossRefGoogle Scholar
  64. [O-S]
    F. Oort and J. Steenbrink The local Torelli problem for algebraic curves, Journées de Geometrie Algébrique d’Angers 1979, ed. A. Beauville, Sijthoff and Noordhoff 1980, 157–204.Google Scholar
  65. [R]
    H. Rauch, The vanishing of a theta constant is a peculiar phenomenon Bull. A.M.S. 73 (1967), 339–342.MathSciNetCrossRefMATHGoogle Scholar
  66. [R-F]
    H. Rauch and H. Farkas, Theta Functions with Applications to Riemann Surfaces, Williams and Wilkins Co., Baltimore, 1974.MATHGoogle Scholar
  67. [SD]
    B. Saint-Donat, On Petri’s analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157–175.MathSciNetCrossRefMATHGoogle Scholar
  68. [Se 1]
    J.P. Serre, Faisceaux algébriques coherents Ann. Math. 61 (1955), 197–278.CrossRefMATHGoogle Scholar
  69. [Se 2]
    J.P. Serre, Géométrie algébrique et géométric analytique, Ann. Inst. Fourier 6 (1956), 1–42.CrossRefMATHGoogle Scholar
  70. [Sh]
    I.R. Shafarevich, Basic Algebraic Geometry Springer-Verlag, New York, 1974.CrossRefMATHGoogle Scholar
  71. [S-V]
    R. Smith and R. Varley, On the geometry of n 0, to appear in a volume of the Istituto di Geometria "C. Segre", University of Torino, Italy.Google Scholar
  72. [Sp]
    E. Spanier, Algebraic Toplogy Springer-Verlag, New York, 1966Google Scholar
  73. [St]
    K. Stein, Séminaire Cartan 1953/54, exp. 13Google Scholar
  74. [Te 1]
    B. Teissier, Deformations à type topologique constant I, II, Séminaire Douady-Verdier 1971–72, Astérisque 16 (1974), 215–249.MathSciNetGoogle Scholar
  75. [Te 2]
    B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse 1972, Astérisque 7–8 (1973), 285–362MathSciNetMATHGoogle Scholar
  76. [Te 3]
    B. Teissier Introduction to equisingularity problems Proc. Symp. Pure Math. 29 (1975), 593–632.MathSciNetCrossRefMATHGoogle Scholar
  77. [Tj 1]
    A.N. Tjurin, Five lectures on three-dimensional varieties, Russian Math. Surveys 27 No.5 (1972), 1–53MathSciNetCrossRefGoogle Scholar
  78. [Tj 2]
    A.N. Tjurin, On the intersections of quadrics, Russian Math. Surveys 30 (1975), 51–105.MathSciNetCrossRefGoogle Scholar
  79. [V]
    J. Vick, Homology Theory, an Introduction to Algebraic Topology, Academic Press, New York, 1973.MATHGoogle Scholar
  80. [W]
    H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, Mass. 1972.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Roy Smith
  • Robert Varley

There are no affiliations available

Personalised recommendations