Symmetries of some reduced free product C*-algebras

  • Dan Voiculescu
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1132)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akemann, C.A.; Ostrand, P.A.: Computing norms in group C*-algebras, Amer.J.Math., 98(1976), 1015–1047.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arveson, W.B.: Notes on extensions of C*-algebras, Duke Math.J., 44(1977), 329–355.MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Behncke, H.: Automorphisms of A(Φ1), unpublished notes.Google Scholar
  4. 4.
    Bratteli, O.; Robinson, D.W.: Operaton algebras and Quantum Statistical Mechanics. II, Springer-Verlag, 1981.Google Scholar
  5. 5.
    Brown, L.G.: Ext of certain free product C*-algebras, J.Operator Theory, 6(1981), 135–141.MathSciNetMATHGoogle Scholar
  6. 6.
    Brown, L.G.; Douglas, R.G.; Fillmore, P.A.: Extensions of C*-algebras and K-homology, Ann. of Math., 105(1977), 265–324.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ching, W.M.: Free products of von Neumann algebras, Trans.Amer. Math.Soc., 178(1973), 147–163.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Choi, M.D.: A simple C*-algebra generated by two finite-order unitaries, Canad.J.Math., 31(1979), 867–880.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Clancey, K.: Seminormal operators, Springer Lecture Notes in Math., 742(1979).Google Scholar
  10. 10.
    Coburn, L.A.: The C*-algebra generated by an isometry, Bull.Amer. Math.Soc., 73(1967), 722–726.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cohen, J.: Operator norms on free groups, preprint.Google Scholar
  12. 12.
    Connes, A.: Non-commutative differential geometry, Chapter I, preprint.Google Scholar
  13. 13.
    Cuntz, J.: Simple C*-algebras generated by isometries, Comm. Math. Phys., 57(1977), 173–185.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cuntz, J.: K-theory for certain C*-algebra. II, J.Operator Theory, 5(1981), 101–108.MathSciNetMATHGoogle Scholar
  15. 15.
    Cuntz, J.: K-theoretic amenability for discrete groups, preprint.Google Scholar
  16. 16.
    Enomoto, M.; Takehana, H.; Watatani, Y.: Automorphisms on Cuntzalgebra, Math.Japon, 24(1979), 463–468.MathSciNetMATHGoogle Scholar
  17. 17.
    Evans, D.: On On, Publ.Res.Inst.Math.Sci., 16(1980), 915–927.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Fannes, M.; Quaegebeur, J.: Central limits of product mappings between CAR algebras, preprint.Google Scholar
  19. 19.
    Figa-Talamanca, A.; Picardello, M.A.: Spherical functions and harmonic analysis on free groups, preprint.Google Scholar
  20. 20.
    Graev, M.J.: Unitary representations of real simple Lie groups (in russian), Trudi Mosk.Mat.Obsch., 7(1958), 335–389.MathSciNetGoogle Scholar
  21. 21.
    Haagerup, U.: An example of a non-nuclear C*-algebra which has the metric approximation property, Invent.Math., 30(1979), 279–293.MathSciNetMATHGoogle Scholar
  22. 22.
    de la Harpe, P.; Jhabvala, K.: Quelques propriétés des algèbres d’une groupe discontinu d’isometries hyperboliques, preprint.Google Scholar
  23. 23.
    Helton, J.W.; Howe, R.: Integral operators: commutators, traces, index and homology, Proc.Conf. on Operator Theory, Springer Lecture Notes in Math., 345(1973), 141–209.MathSciNetMATHGoogle Scholar
  24. 24.
    Hudson, R.L.; Wilkinson, M.D.; Peck, S.N.: Translation-invariant integrals, and Fourier Analysis on Clifford and Grassmann algebras, J.Functional Analysis, 27(1980), 68–87.MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kac, V.G.; Lie superalgebras, Advances in Math., 26(1977), 8–96.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kadison, R.V.: Notes on the Fermi gas, Symposia Math. vol.XX, 425–431, Academic Press (1976).MathSciNetMATHGoogle Scholar
  27. 27.
    Kasparov, G.G.: Hilbert C*-modules: theorems of Stinespring and Voiculescu, J. Operator Theory, 4(1980), 133–150.MathSciNetMATHGoogle Scholar
  28. 28.
    Kasparov, G.G.: The operator K-functor and extensions of C*-algebras, Izv.Akad.Nauk, Ser.Mat., 44(1980), 536–571.MathSciNetGoogle Scholar
  29. 29.
    Lance, E.C.: K-theory for certain group C*-algebras, preprint.Google Scholar
  30. 30.
    Paschke, W.: Inner product modules over B*-algebras, Trans.Amer. Math.Soc., 182(1973), 443–468.MathSciNetMATHGoogle Scholar
  31. 31.
    Paschke, W.; Salinas, N.; Matrix algebras over On, Michigan Math. J., 26(1979), 3–12.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Paschke, W.; Salinas, N.: C*-algebras associated with free products of groups, Pacific J.Math., 82(1979), 211–221.MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Phillips, J.: Automorphisms of full II, factors with applications to factors of type III, Duke Math.J., 43(1976), 375–385.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Pimsner, M.; Popa, S.: The Ext-groups of some C*-algebras considered by J.Cuntz, Rev.Roumaine Math.Pures Appl., 23(1978), 1069–1076.MathSciNetMATHGoogle Scholar
  35. 35.
    Pimsner, M.; Voiculescu, D.: K-groups of reduced crossed products by free groups, J.Operator Theory, 8(1982), 131–156.MathSciNetMATHGoogle Scholar
  36. 36.
    Powers, R.T.: Simplicity of the C*-algebra associated with the free group on two generators, Duke Math.J., 42(1975), 151–156.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Rieffel, M.A.: Induced representations of C*-algebras, Math., 13(1974), 176–257.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Rosenberg, J.: Amenability of crossed products of C*-algebras, Comm.Math.Phys., 57(1977), 187–191.MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Shale, D.: Linear symmetries of the free boson field, Trans. Amer.Math.Soc., 103(1962), 149–167.MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Skandalis, G.: Exact sequences for the Kasparov groups of graded algebras, preprint.Google Scholar
  41. 41.
    StrĂtilĂ, S.; Zsidó, L.: Lectures on von Neumann algebras, Editura Academiei, Abacus Press, 1979.MATHGoogle Scholar
  42. 42.
    Szegö, G.: Orthogonal polynomials, AMS Colloquium Publications vol.XXIII, 1959.Google Scholar
  43. 43.
    Vilenkin, N.Ia.: Special functions and the theory of group representations (in russian), Moscow, 1965.Google Scholar
  44. 44.
    Voiculescu, D.: A non-commutative Weyl-von Neumann theorem, Rev.Roumaine Math.Pures Appl., 21(1976), 97–113.MathSciNetMATHGoogle Scholar
  45. 45.
    Warner, G.: Harmonic Analysis of Semi-Simple Lie Groups. I, Springer-Verlag, 1972.Google Scholar
  46. 46.
    Watatani, Y.: Clifford C*-algebras, Math.Japon, 24(1980), 533–536.MathSciNetMATHGoogle Scholar
  47. 47.
    Zhelobenko, D.P.: Compact Lie groups and their representations (in russian), Nauka, Moscow, 1970.MATHGoogle Scholar
  48. 48.
    Cuntz,J.: Automorphisms of certain simple C*-algebras.Google Scholar

Copyright information

© Springer-Verleg 1985

Authors and Affiliations

  • Dan Voiculescu
    • 1
  1. 1.Department of MathematicsINCRESTBucharestRomania

Personalised recommendations