K-theory of the reduced C*-algebra of SL2(Qp)

  • R. J. Plymen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1132)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Borel. Admissible representations of a semisimple group over a local field with vectors fixed under an Iwahori subgroup. Inventiones Math. 35 (1976) 233–259.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    R. Boyer and R. Martin. The regular group C*-algebra for real-rank one groups. Proc. Amer. Math. Soc. 59 (1976) 371–376.MathSciNetMATHGoogle Scholar
  3. 3.
    W. Casselman. The Steinberg character as a true character. Proc. Symp. Pure Math. 26 (1973) 413–418.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    C. Delaroche. Extensions des C*-algèbres. Bull. Soc. Math. France, Mémoire 29 (1972).Google Scholar
  5. 5.
    J. Dixmier. C*-algebras. North Holland, Amsterdam 1977.MATHGoogle Scholar
  6. 6.
    J.M.G. Fell. The dual spaces of C*-algebras. Trans. Amer. Math. Soc. 94 (1960) 365–403.MathSciNetMATHGoogle Scholar
  7. 7.
    I.M. Gelfand, M.I. Graev, I.I. Pyatetskii-Shapiro. Representation theory and automorphic functions. Saunders, Philadelphia, 1969.Google Scholar
  8. 8.
    S.S. Gelbart. Automorphic forms on adèle groups. Annals of Math. Studies 83, Princeton, 1975.Google Scholar
  9. 9.
    C.L. Gulizia. Harmonic analysis of SL(2) over a locally compact field. J. Functional Analysis 12 (1973) 384–400.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    P. Julg and A. Valette. K-moyennabilité pour les groupes opérant sur les arbres. C.R. Acad. Sci. Paris 296 (1983) 977–980.MathSciNetMATHGoogle Scholar
  11. 11.
    —. Groups acting on trees and K-amenability. These proceedings 1983.Google Scholar
  12. 12.
    R.L. Lipsman. The dual topology for the principal and discrete series on semisimple groups. Trans. Amer. Math. Soc. 152 (1970) 399–417.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    P.J. Sally. Character formulas for SL2. Proc. Symp. Pure Math. 26 (1973) 395–400.MathSciNetCrossRefGoogle Scholar
  14. 14.
    P.J. Sally and J.A. Shalika. The Plancherel formula for SL2 over a local field. Proc. Nat. Acad. Sci. U.S.A. 63 (1969) 661–667.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    A. Valette. Minimal projections, integrable representations and property (T). Preprint 1983.Google Scholar
  16. 16.
    J-P. Serre. A course in arithmetic. Springer-Verlag, Berlin, 1973.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verleg 1985

Authors and Affiliations

  • R. J. Plymen
    • 1
  1. 1.Mathematics DepartmentThe UniversityManchesterEngland

Personalised recommendations