Quasi-product states on C*-algebras

  • David E. Evans
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1132)

Abstract

We introduce and study a class of Markov measures, which we call quasi-product measures, on compact totally disconnected path spaces, and consider the induced states, called quasi-product states on the associated unital AF algebras and the infinite C*-algebras 0A associated with a topological Markov chain A. For product spaces, and UHF algebras these are precisely product measures and product states respectively. In particular, we give sufficient conditions which ensure that the gauge group is weakly outer in certain quasi-product weights on the stablised C*-algebra of 0A.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Araki, A.L. Carey, D.E. Evans. On On+1. J. Operator Theory (in press).Google Scholar
  2. [2]
    H. Araki, R. Haag, D. Kastler, M. Takesaki. Extension of states and chemical potential. Commun. math. Phys. 53 (1977), 97–134.MathSciNetCrossRefGoogle Scholar
  3. [3]
    O. Bratteli, D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics II. Springer Verlag. Berlin, Heidelberg, New York 1981.CrossRefMATHGoogle Scholar
  4. [4]
    J. Cuntz. Simple C*-algebras generated by isometries. Commun. math. Phys. 57 (1977), 173–185.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. Cuntz, W. Krieger, A class of C*-algebras and topological Markov chains. Inventiones Math. 56 (1980), 251–258.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D.E. Evans. On On. Publ.RIMS Kyoto Univ. 16 (1980), 915–927.CrossRefMATHGoogle Scholar
  7. [7]
    D.E. Evans. Entropy of automorphisms of AF algebras. Publ. RIMS Kyoto Univ. 18 (1982), 1045–1051.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    D.E. Evans. The C*-algebras of topological Markov chains. Lecture notes. Tokyo Metropolitan University, 1983.Google Scholar
  9. [9]
    S. Kakutani. On equivalence of infinite product measures, Ann. of Math. 49 (1948), 214–222.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    W. Krieger. On constructing non-isomorphic hyperfinite factors of type III. J. Func. Analysis. 6 (1970), 97–109.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    C.C. Moore. Invariant measures on product spaces. Proc. of the Fifth Berkeley Symposium on Math. Stat. and Probability. Vol. II, part II, 447–459 (1967).MathSciNetGoogle Scholar
  12. [12]
    E. Seneta. Non negative matrices and Markov chains. Springer-Verlag. Berlin, Heidelberg and New York. (2nd edition), 1981.CrossRefMATHGoogle Scholar
  13. [13]
    S. Stratila, D. Voiculescu. Representations of AF algebras and of the group U(∞). Lecture notes in Mathematics. Springer-Verlag, vol. 486. Berlin, Heidelberg and New York, 1975.MATHGoogle Scholar

Copyright information

© Springer-Verleg 1985

Authors and Affiliations

  • David E. Evans
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations