The isomorphism problem for group rings: A survey

  • Robert Sandling
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1142)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alperin, J.L.; Evens, L. Varieties and elementary abelian groups. J. Pure Appl. Algebra 26(1982), 221–227. MR84a:20057MathSciNetMATHCrossRefGoogle Scholar
  2. Artin, E. The orders of the classical simple groups. Comm. Pure Appl. Math. 8(1955), 455–472. MR17, 457MathSciNetMATHCrossRefGoogle Scholar
  3. Aschbacher, M: Guralnick, R. Some applications of the first cohomology group. J. Algebra 90(1984), 446–460.MathSciNetMATHCrossRefGoogle Scholar
  4. Avrunin, G.S.; Scott, L.L. Quillen stratification for modules. Invent.Math. 66(1982), 277–286. MR83h:20048MathSciNetMATHCrossRefGoogle Scholar
  5. Banaschewski, B. Integral group rings of finite groups. Canad. Math. Bull. 10(1967), 635–642. MR38 1187MathSciNetMATHCrossRefGoogle Scholar
  6. deBarros, L.G.X. O problema do isomorfismo para álgebra de grupo. Master’s thesis, Univ. de São Paulo, 1974.Google Scholar
  7. Bass, H. The stable structure of quite general linear groups. Bull. Amer. Math. Soc. 70(1964), 429–433. MR28 4035MathSciNetMATHCrossRefGoogle Scholar
  8. Bass, H. Algebraic K-theory. W.A. Benjamin, New York, MR40 2736Google Scholar
  9. Baumslag, G. (ed.) Reviews on Infinite Groups. Amer. Math. Soc., Providence, R.I. 1974. MR50 2311MATHGoogle Scholar
  10. Bautista Ramos, R. Algunos resultados sobre álgebras de grupos abelianos finitos. An. Inst. Mat. Univ. Nac. Autónoma México 7(1967), 1–25. MR38 2220MathSciNetGoogle Scholar
  11. Bautista Ramos, R. Errata: Algunos resultados sobre álgebras de grupos abelianos finitos. An. Inst. Mat. Univ. Nac. Autónoma México 8(1968), 79. MR39 5712MathSciNetGoogle Scholar
  12. Beers, D.; Richman, F.; Walker, E.A. Group algebras of Abelian groups. Rend. Sem. Mat. Univ. Padova 69(1983), 41–50. Zbl.522.20006MathSciNetMATHGoogle Scholar
  13. Benson, D. Modular Representation Theory: New Trends and Methods. Lecture Notes in Math., 1081, Springer, Berlin, 1984.MATHGoogle Scholar
  14. Berman, S.D. On certain properties of integral group rings. (Russian) Dokl. Akad. Nauk SSSR (N.S.) 91 (1953), 7–9. MR15,99MathSciNetGoogle Scholar
  15. Berman, S.D. On a necessary condition for isomorphism of integral group rings. (Ukrainian) Dopovīdī Akad. Nauk Ukraïn. RSR 1953, 313–316. MR15,599Google Scholar
  16. Berman, S.D. On the equation xm=1 in an integral group ring. (Russian) Ukrain. Mat. Zh. 7(1955), 253–261. MR17,1048Google Scholar
  17. Berman, S.D. On automorphisms of the centre of an integral group ring. (Russian) Dokl. Soobsch. Uzhgorod. Gos. Univ. Ser. Fiz.-Mat. Nauk 1960, no.3, 55.Google Scholar
  18. Berman, S.D. (Review of Cohn-Livingstone 1963). RZh Mat. 1964, vol. 10, p.26.Google Scholar
  19. Berman, S.D.; Rossa, A.R. Integral group rings of finite and periodic groups. (Russian), Algebra and Math. Logic: Studies in Algebra, pp. 44–53, Izdat. Kiev. Univ., Kiev, 1966. MR35 265Google Scholar
  20. Beyl, F. Rudolf; Tappe, Jürgen. Group Extensions, Representations and the Schur Multiplicator. Lecture Notes in Math., 958, Springer, Berlin, 1982. MR84f:20002MATHGoogle Scholar
  21. Boerner, Hermann. Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band I: Algebra und Zahlentheorie. 1. Teil A. Grundlagen; B. Algebra. Heft 6, Teil II. No. 15: Darstellungstheorie der endlichen Gruppen. B.G. Teubner, Stuttgart, 1967. MR37 2872Google Scholar
  22. Bovdi, A.A. On group rings of nilpotent groups. (Russian) Twelfth All-Union Algebra Colloquium (Sverdlovsk, 1973), Abstracts of papers, Part I, p.130, Akad. Nauk SSSR Ural Nauchn. Centre., Sverdlovsk, 1973. See MR58 15767aGoogle Scholar
  23. Bovdi, A.A. Group Rings. Textbook. (Russian), University publishers, Uzhgorod, 1974, Zbl.339.16004MATHGoogle Scholar
  24. Bovdi, A.A. Remarks on the automorphisms of a group ring. (Russian) Latv. Mat. Ezhegodnik 18(1976), 19–26. MR58 5760MathSciNetMATHGoogle Scholar
  25. Bovdi, A.A. The structure of group bases of a group ring. (Russian) Mat. Zametki 32(1982), 459–468. = Math. Notes 32(1982), 709–713. MR84e:20010MathSciNetMATHGoogle Scholar
  26. Bovdi, A.A.; Patai, Z.F. The structure of the centre of the multiplicative group of the group ring of a p-group over a ring of characteristic p. (Russian) Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1978, no.1, 5–11. MR58 5762Google Scholar
  27. Bovdi, A.A.; Semirot, M.C. Involution and isomorphism of group rings. (Russian) Twelfth All-Union Algebra Colloquium (Sverdlovsk, 1973), Abstracts of papers, Part I, p.131, Akad. Nauk SSSR Ural Nauchn. Centr., Sverdlovsk, 1973. See MR58 15767aGoogle Scholar
  28. Bovdi, A.A.; Semirot, M.C. On the question of the isomorphism of modular group algebras. (Ukrainian) Abstracts. Second Conf. of Young Scientists Akad. Nauk UkSSR, pp.48–54, Uzhgorod, 1975 (dep VINITI, No.1734–76) RZhMat1976, 9A293.Google Scholar
  29. The following papers of Brauer are reproduced in Vols. I and II of: Richard Brauer: Collected Papers. MIT Press, Cambridge MA, 1980. MR8li:01017Google Scholar
  30. Brauer, R. Über Systeme hyperkomplexer Zahlen. Math. Z. 30 (1929), 79–107. F.d.M.55II, 88.MathSciNetMATHCrossRefGoogle Scholar
  31. Brauer, R. On modular and p-adic representations of algebras. Proc. Nat. Acad. Sci. U.S.A. 25(1939), 252–258. Zbl.22,303MATHCrossRefGoogle Scholar
  32. Brauer, R. Zur Darstellungstheorie der Gruppen endlicher Ordnung. Math. Z. 63 (1956), 406–444. MR17,824MathSciNetMATHCrossRefGoogle Scholar
  33. Brauer, R. Number theoretical investigations on groups of finite order. Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, pp.55–62. Science Council of Japan, Tokyo, 1956. MR18, 716Google Scholar
  34. Brauer, R., Representations of finite groups. Lectures on Modern Mathematics, Vol. I, pp.133–175, Wiley, New York, 1963, MR31 2314MATHGoogle Scholar
  35. Brown, C.F. Automorphisms of integral group rings. Ph.D. thesis, Michigan State Univ., 1971. DAI32(1972), p.5302BGoogle Scholar
  36. Carlson, J.F. Periodic modules over modular group algebras. J. London Math. Soc. (2)15(1977), 431–436. MR57 12664MathSciNetMATHCrossRefGoogle Scholar
  37. Cliff, G.H.; Sehgal, S.K.; Weiss, A.R. Units of integral group rings of metabelian groups. J. Algebra 73 (1981), 167–185. MR83i:20006MathSciNetMATHCrossRefGoogle Scholar
  38. Cohen, D.E. On abelian group algebras. Math. Z. 105(1968), 267–268. MR37 4176MathSciNetMATHCrossRefGoogle Scholar
  39. Cohn, J.A.; Livingstone, D. On groups of the order p3. Canad. J. Math. 15(1963), 622–624. MR27 3700MathSciNetMATHCrossRefGoogle Scholar
  40. Cohn, J.A.; Livingstone, D. On the structure of group algebras. I. Canad. J. Math. 17(1965), 583–593. MR31 3514.MathSciNetMATHCrossRefGoogle Scholar
  41. Cohn, J.A.; Livingstone, D. On the structure of group algebras. II. Unpublished, 196x.Google Scholar
  42. Cohn, P.M. Integral modules, Lie-rings and free groups. Ph.D. thesis, Cambridge Univ., 1951.Google Scholar
  43. Cohn, P.M. Generalization of a theorem of Magnus. Proc. London Math. Soc. (3)2(1952), 297–310. Corrigenda: see index page. MR14,532MathSciNetMATHCrossRefGoogle Scholar
  44. Coleman, D.B. Finite groups with isomorphic group algebras. Ph.D. thesis, Purdue Univ., 1961. DA22(1962), p.2405Google Scholar
  45. Coleman, D.B. Finite groups with isomorphic group algebras. Trans. Amer. Math. Soc. 105(1962), 1–8. MR26 191MathSciNetMATHCrossRefGoogle Scholar
  46. Coleman, D.B. On the modular group ring of a p-group. Proc. Amer. Math. Soc. 15(1965), 511–514. MR29 2306MathSciNetMATHGoogle Scholar
  47. Crowell, R.H. Corresponding group and module sequences. Nagoya Math. J. 19(1961), 27–40. Zbl.101,264MathSciNetMATHCrossRefGoogle Scholar
  48. Culler, M. Homology equivalent finite groups are isomorphic. Proc. Amer. Math. Soc. 72(1978), 218–220. MR58 5971MathSciNetMATHGoogle Scholar
  49. Curtis, Charles W.; Reiner. Irving. Representation Theory of Finite Groups and Associative Algebras. Interscience-Wiley, New York, 1962. MR26 2519MATHGoogle Scholar
  50. Curtis, C.W.; Reiner, I. Methods of Representation Theory. Vol. I. Wiley, New York, 1981. MR82i:20001MATHGoogle Scholar
  51. Dade, E.C. Answer to question of R. Brauer. J. Algebra I(1964), 1–4. MR30 1191MathSciNetMATHCrossRefGoogle Scholar
  52. Dade, E.C. Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps. Math. Z. 119(1971), 345–348. MR43 6329MathSciNetMATHCrossRefGoogle Scholar
  53. Dennis, R.K. The structure of the unit group of group rings. Ring theory, II, pp.103–130, Dekker, New York, 1977. MR56 3047Google Scholar
  54. Deskins, W.E. On finite Abelian groups having isomorphic group algebras. Bull. Amer. Math. Soc. 61(1955), 125.Google Scholar
  55. Deskins, W.E. Finite abelian groups with isomorphic group algebras. Duke Math J. 23(1956), 35–40. MR17,1052MathSciNetMATHCrossRefGoogle Scholar
  56. Dickson, L.E. Linear Groups. B.G. Teubner, Leipzig, 1901; Dover, New York, 1958. MR21 3488 F.d.M.32, 128MATHGoogle Scholar
  57. Dieckmann, E.M. Isomorphism of group algebras of p-groups. Ph.D. thesis, Washington Univ., 1967. DA28(1968), p.4194B–4195BGoogle Scholar
  58. Dieudonné, J. Lie groups: classical, algebraic and formal. Lecture, 21-st British Mathematical Colloquium, Birmingham, 28 March 1969.Google Scholar
  59. Endo, S.; Miyata, T.; Sekiguchi, K. Picard groups and automorphism groups of integral group rings of metacyclic groups. J. Algebra 77(1982), 286–310. MR84b:16010MathSciNetMATHCrossRefGoogle Scholar
  60. Evens, L. The cohomology ring of a finite group. Trans. Amer. Math. Soc. 101(1961), 224–239. MR25 1191MathSciNetMATHCrossRefGoogle Scholar
  61. Fröhlich, A. The Picard group of non-commutative rings, in particular of orders. Trans. Amer. Math. Soc. 180(1973), 1–45. MR47 6571MathSciNetMATHCrossRefGoogle Scholar
  62. Furukawa, T. A note on isomorphisminvariants of a modular group algebra. Math. J. Okayama Univ. 23(1981), 1–5. MR82k:16012MathSciNetMATHGoogle Scholar
  63. Furukawa, T. On isomorphism invariants of integral group rings. Math. J. Okayama Univ. 23(1981), 125–130. MR83d:20004MathSciNetMATHGoogle Scholar
  64. Gallagher, P.X. Invariants for finite groups. Adv. in Math. 34(1979), 46–57. MR81c:20011MathSciNetMATHCrossRefGoogle Scholar
  65. Garrison, S.C. Determining the Frattini subgroup from the character tables. Canad. J. Math. 28(1976), 560–567. MR53 8214MathSciNetMATHCrossRefGoogle Scholar
  66. Gilmer, R. Commutative Semigroup Rings. U. Chicago Press, Chicago, 1984.MATHGoogle Scholar
  67. Gorenstein, D. (ed.) Reviews on Finite Groups. Amer. Math. Soc., Providence, 1974. MR50 2312MATHGoogle Scholar
  68. Gorenstein, D.; Lyons, R. The local structure of finite groups of characteristic 2 type. Mem. Amer. Math. Soc. 42(1983), no.276. MR84g:20025Google Scholar
  69. Green, J.A. Richard Dagobert Brauer. Bull. London Math. Soc. 10(1978), 317–342. MR80g:01024MathSciNetMATHCrossRefGoogle Scholar
  70. Gruenberg, K.W. Some Cohomological Topics in Group Theory. Queen Mary College, London, 1967. MR41 3608MATHGoogle Scholar
  71. Gruenberg, K.W. Cohomological Topics in Group Theory. Lecture Notes in Math., 143, Springer, Berlin, 1970. MR43 4923MATHGoogle Scholar
  72. Gruenberg, K.W.; Roggenkamp, K.W. Decomposition of the augmentation ideal and of the relation modules of a finite group. Proc. London Math. Soc. (3)31(1975), 149–166. MR51 10447MathSciNetMATHCrossRefGoogle Scholar
  73. Gruenberg, K.W.; Roggenkamp, K.W. The decomposition of relation modules: a correction. Proc. London Math. Soc. (3)45(1982), 89–96. MR83j:20019MathSciNetMATHCrossRefGoogle Scholar
  74. Grunewald, F.; Segal, D. Some general algorithms. I: Arithmetic groups. Ann. of Math.(2)112(1980), 531–583. MR82d:20048aMathSciNetMATHCrossRefGoogle Scholar
  75. Hall, M.; Senior, J. The Groups of Order 2n(n⩽6). Macmillan, New York, 1964. MR29 5889MATHGoogle Scholar
  76. Hall, Philip. The classification of prime power groups. J. Reine Angew. Math. 182 (1940), 130–141. MR2,211MathSciNetMATHGoogle Scholar
  77. Hashisaki, J. On group algebras of prime power groups. Ph.D. thesis, Univ. Illinois, Urbana, 1953. DA13(1953), p.1211Google Scholar
  78. Hattori, Akira. On the isomorphism problem of group algebras. (Japanese) Lecture, Algebra Colloquium No.25. Tokyo, 5 June, 1971.Google Scholar
  79. Hattori, Akira. Strong separability and group algebras. Sci. Papers College Arts Sci. Univ. Tokyo 35(1985)Google Scholar
  80. Hawkins, T. New light on Frobenius’ creation of the theory of group characters. Arch. Hist. Exact Sci. 12(1974), 217–243. MR56 5161MathSciNetMATHCrossRefGoogle Scholar
  81. Higman, G. The units of group-rings. Proc. London Math. Soc. (2)46(1940),231–248. MR2,5MathSciNetMATHCrossRefGoogle Scholar
  82. Higman, G. Units in group rings. D. Phil. thesis, Oxford Univ., 1940.Google Scholar
  83. Hoheisel, G. Über Charaktere. Monatsh. Math. Phys. 48(1939), 448–456. MR1,104MathSciNetMATHCrossRefGoogle Scholar
  84. Holvoet, R. Sur les Z2-algèbres du groupe diédral d’ordre 8 et du groupe quaternionique. C.R. Acad. Sci. Paris Sér.A–B 262(1966), A209–A210. MR32 5726MathSciNetMATHGoogle Scholar
  85. Holvoet, R. Sur l’isomorphie d’algèbres de groupes. Bull. Soc. Math. Belg. 20(1968), 264–282. MR39 1571MathSciNetMATHGoogle Scholar
  86. Holvoet, R. De groepalgebra van een eindige p-groep over een veld met karakteristiek p. Simon Stevin 42(1969), 157–170. MR40 4382MathSciNetGoogle Scholar
  87. Hooke, R. Finite groups and restricted Lie algebras. Duke Math. J. 8(1941), 533–540. MR3,103MathSciNetMATHCrossRefGoogle Scholar
  88. Hughes, I.; Pearson, K.R. The group of units of the integral group ring ZS3. Canad. Math. Bull. 15(1972), 529–534. MR48 4089MathSciNetMATHCrossRefGoogle Scholar
  89. Hughes, I.; Wei, C.-H. Group rings with only trivial units of finite order. Canad. J. Math. 24(1972), 1137–1138. MR47 313MathSciNetMATHCrossRefGoogle Scholar
  90. Huppert, B. Endliche Gruppen. I. Springer, Berlin, 1967. MR37 302MATHCrossRefGoogle Scholar
  91. Huppert, B.; Blackburn, N. Finite Groups. II. Springer, Berlin, 1982. MR84i:20001aMATHCrossRefGoogle Scholar
  92. Isaacs, I.M. Character Theory of Finite Groups. Academic Press, New York, 1976. MR57 417MATHGoogle Scholar
  93. Jackson, D.A. The groups of units of the integral group rings of finite metabelian and finite nilpotent groups. Quart. J. Math. Oxford Ser. (2)20(1969), 319–331. MR40 2766.MathSciNetMATHCrossRefGoogle Scholar
  94. Jacobson, N. Classes of restricted Lie algebras of characteristic p, II. Duke Math. J. 10(1943), 107–121. MR4,187MathSciNetMATHCrossRefGoogle Scholar
  95. Jennings, S.A. The structure of the group ring of a p-group over a modular field. Trans. Amer. Math. Soc. 50(1941), 175–185. MR3,34MathSciNetMATHGoogle Scholar
  96. Johnson, D.L. The modular group-ring of a finite p-group. Proc. Amer. Math. Soc. 68(1978), 19–22. MR56 15744MathSciNetMATHGoogle Scholar
  97. Karpilovsky, G. On group rings of finite metabelian groups. J. Austral. Math. Soc. Ser.A 28(1979), 378–384. MR82j:20015MathSciNetMATHCrossRefGoogle Scholar
  98. Karpilovsky, G. On certain group ring problems. Bull. Austral. Math. Soc. 21(1980), 329–350. MR82c:16011MathSciNetMATHCrossRefGoogle Scholar
  99. Karpilovsky, G. On some properties of group rings. J. Austral. Math. Soc. Ser.A 29(1980), 385–392. MR81h:16023MathSciNetMATHCrossRefGoogle Scholar
  100. Karpilovsky, G. Finite groups with isomorphic group algebras. Illinois J.Math.25(1981), 107–111. MR82d:20010MathSciNetMATHGoogle Scholar
  101. Karpilovsky, G. On some properties of group rings. Publ. Math. Debrecen 29(1982), 101–105. MR83m:16010MathSciNetMATHGoogle Scholar
  102. Karpilovsky, G. Commutative Group Algebras. M. Dekker, New York, 1983. MR85a:16014MATHGoogle Scholar
  103. Kawada, Yukiyosi. On the group ring of a topological group. Math. Japon. 1(1948), 1–5. MR10,11MathSciNetMATHGoogle Scholar
  104. Keast, G.D. The group of units of the integral group ring ZA4. M.Sc. thesis, La Trobe Univ. 1975.Google Scholar
  105. Kmet, S.; Sehgal, S. Some isomorphism invariants of integral group rings. Rocky Mountain J. Math. (198x)Google Scholar
  106. Koshitani, S. On the nilpotency indices of the radicals of group algebras of P-groups which have cyclic subgroups of index P. Tsukuba J. Math. 1(1977), 137–148. MR58 773MathSciNetMATHGoogle Scholar
  107. Lam, S.P. Unstable algebras over the Steenrod algebra and cohomology of classifying spaces. Ph.D. thesis, Cambridge Univ., 1982.Google Scholar
  108. Lam, S.P. Unstable algebras over the Steenrod algebra. Algebraic Topology, Aarhus 1982, pp.374–392. Lecture Notes in Math., 1051, Springer, Berlin, 1984.Google Scholar
  109. Laudal, O.A. p-groups and Massey products. Preprint Series 1975/76 No. 30 (revised Jan. 1977), Matematisk Institut, Aarhus Univ., 1976. RZh1977,5A276Google Scholar
  110. Lazard, M. Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. Ecole Norm. Sup. (3)71(1954), 101–190. MR19,529MathSciNetMATHGoogle Scholar
  111. Lazard, M. Groupes analytiques p-adiques. Inst. Hautes Études Sci. Publ. Math. No.26 (1965), 389–603. MR35 188Google Scholar
  112. Learner, A. Cohomology of Groups. Queen Mary College, London, 1965.MATHGoogle Scholar
  113. Lombardo-Radice, L. Intorno alle algebre legate ai gruppi di ordine finito. Nota 1a, Rend. Sem. Mat. Roma (4)2(1938), 312–322. Zbl.20,341.MATHGoogle Scholar
  114. Losey, G. On dimension subgroups. Trans. Amer. Math. Soc. 97(1960), 474–486. MR26 6260MathSciNetMATHCrossRefGoogle Scholar
  115. Makasikis, A. Sur l’isomorphie d’algèbres de groupes sur un champ modulaire. Bull. Soc. Math. Belg. 28(1976), 91–109. MR81b:20009MathSciNetMATHGoogle Scholar
  116. Mehrvarz, A.A. Topics in the isomorphism of group rings. Ph.D. thesis, Stirling Univ., 1979.Google Scholar
  117. Merklen, H.A. Group bases of group rings. Bol. Soc. Brasil. Mat. 10(1979), 15–23. MR82d:20011MathSciNetMATHCrossRefGoogle Scholar
  118. Morand, R. Une propriété des algèbres de groupes nilpotentes finis. C.R. Acad. Sci. Paris Sér. A-B 272(1971), A1227–A1229. MR43 7524MathSciNetGoogle Scholar
  119. Motose, K. On a theorem of S. Koshitani. Math. J. Okayama Univ. 20(1978), 59–65. MR58 10995MathSciNetMATHGoogle Scholar
  120. Müller, W. Gruppenalgebren über nichtzyklischen p-Gruppen. I. Die Dieder-und die Quasidiedergruppen. J. Reine Angew. Math. 266(1974), 10–48. MR49 5150.MathSciNetMATHGoogle Scholar
  121. Müller, W. Gruppenalgebren über nichtzyklischen p-Gruppen. II: Die Quaternionengruppe und die verallgemeinerten Quaternionengruppen. J. Reine Angew. Math. 267(1974), 1–19. MR49 9064MathSciNetMATHGoogle Scholar
  122. Nachev, N.A.; Mollov, T.Zh. Ulm-Kaplansky invariants of the group of normed units of the center of the group ring of an FC-p-group over a commutative ring of characteristic p. (Russian) Serdica 7(1981), 42–56. MR82k:20015MathSciNetMATHGoogle Scholar
  123. Nachev, N.A.; Mollov, T.Zh. An isomorphism of modular group algebras of finite 2-groups for which the factor-group with respect to the center has order four. (Russian) C.R. Acad. Bulgare Sci. 34(1981), 1633–1636. MR83m:20013MathSciNetMATHGoogle Scholar
  124. Nagao, H. On the groups with the same table of characters as symmetric groups. J. Inst. Polytech. Osaka City Univ. Ser. A. 8(1957), 1–8. MR19,387MathSciNetMATHGoogle Scholar
  125. Neroslavskii, O.M. Structures that are connected with radical rings. (Russian) Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1973, no. 2, 5–10. MR48 8547Google Scholar
  126. Obayashi, T. Solvable groups with isomorphic group algebras. J. Math. Soc. Japan 18(1966), 394–397. MR33 5750.MathSciNetMATHCrossRefGoogle Scholar
  127. Obayashi, T. On integral group rings. (Japanese) Sûgaku 19(1967), 82–94. MR37 4178MathSciNetGoogle Scholar
  128. Obayashi, T. Integral group rings of finite groups. Osaka J. Math. 7(1970), 253–266. MR43 2122MathSciNetMATHGoogle Scholar
  129. Obayashi, T. On the isomorphism problem. (Japanese) Proceedings, 20-th Symposium on Algebra, pp.45–52, Japan, 1974.Google Scholar
  130. Obayashi, T. A note on group bases for integral group rings. Unpublished, 1978.Google Scholar
  131. Pahlings, H. Characterization of groups by their character tables I. Comm. Algebra 4(1976), 111–153. MR53 8217MathSciNetMATHCrossRefGoogle Scholar
  132. Parmenter, M.M. Dimension theory, isomorphism and related problems in group rings. Ph.D. thesis, Univ. of Alberta, 1972.Google Scholar
  133. Parmenter, M.M.; Polcino Milies, C. A note on isomorphic group rings. Bol. Soc. Brasil. Mat. 12(1981), 57–59. MR84c:20015MathSciNetMATHCrossRefGoogle Scholar
  134. Passi, I.B.S.; Sehgal, S.K. Isomorphism of modular group algebras. Math. Z. 129(1972), 65–73. MR47 314MathSciNetMATHCrossRefGoogle Scholar
  135. Passi, I.B.S. Group Rings and Their Augmentation Ideals. Lecture Notes in Math., 715, Springer, Berlin, 1979. MR80k:20009MATHGoogle Scholar
  136. Passman, D.S. Group ring properties of groups. Ph.D. thesis, Harvard Univ., 1964.Google Scholar
  137. Passman, D.S. Isomorphic groups and group rings. Pacific J. Math. 15(1965), 561–583. MR33 1381MathSciNetMATHCrossRefGoogle Scholar
  138. Passman, D.S. The group algebras of groups of order p4 over a modular field. Michigan Math. Journal 12(1965), 405–415. MR32 2492MathSciNetMATHCrossRefGoogle Scholar
  139. Passman, D.S. Corrections to: "Isomorphic groups and group rings". Pacific J. Math 43(1972), 823–824. MR48 398MathSciNetMATHCrossRefGoogle Scholar
  140. Passman, D.S. Advances in group rings. Israel J. Math. 19(1974), 67–107. MR50 9945MathSciNetMATHCrossRefGoogle Scholar
  141. Passman, D.S. The Algebraic Structure of Group Rings. Wiley-Interscience, New York, 1977. MR81d:16001MATHGoogle Scholar
  142. Passman, D.S.; Smith, P.F. Units in integral group rings. J. Algebra 69(1981), 213–239. MR82h:20009MathSciNetMATHCrossRefGoogle Scholar
  143. Perlis, S.; Walker, G.L. Finite Abelian group algebras. I. Bull. Amer. Math. Soc. 54(1948), 651.Google Scholar
  144. Perlis, S.; Walker, G.L. Abelian group algebras of finite order. Trans. Amer. Math. Soc. 68(1950), 420–426. MR11,638MathSciNetMATHCrossRefGoogle Scholar
  145. Peterson, G.L. On the automorphism group of an integral group ring. Ph.D. thesis, Michigan State Univ., 1975. DAI36(1975), p.1260B–1261BGoogle Scholar
  146. Peterson, G.L. Automorphisms of the integral group ring of Sn. Proc. Amer. Math. Soc. 59(1976), 14–18. MR54 385.MathSciNetMATHGoogle Scholar
  147. Peterson, G.L. On the automorphism group of an integral group ring, I. Arch. Math. (Basel) 28(1977), 577–583. MR57 3184aMathSciNetMATHCrossRefGoogle Scholar
  148. Peterson, G.L. On the automorphism group of an integral group ring, II. Illinois J. Math. 21(1977), 836–844. MR57 3184bMathSciNetMATHGoogle Scholar
  149. Polcino Milies, F.C. Anéis de Grupos. Instituto de Matemática e Estatistica, Univ. de São Paulo, São Paulo, 1976. Zbl.407.16008MATHGoogle Scholar
  150. Quillen, D.G. On the associated graded ring of a group ring. J. Algebra 10(1968), 411–418. MR38 245MathSciNetMATHCrossRefGoogle Scholar
  151. Quillen, D. The spectrum of an equivariant cohomology ring: I. Ann. of Math. (2)94(1971), 549–572. MR45 7743MathSciNetMATHCrossRefGoogle Scholar
  152. Quillen, D. The spectrum of an equivariant cohomology ring: II. Ann. of Math. (2)94(1971), 573–602. MR45 7743MathSciNetMATHCrossRefGoogle Scholar
  153. Quillen, D. A cohomological criterion for p-nilpotence. J. Pure Appl. Algebra 1(1971), 361–372. MR47 6886MathSciNetMATHCrossRefGoogle Scholar
  154. Quillen, D.; Venkov, B.B. Cohomology of finite groups and elementary abelian subgroups. Topology 11(1972), 317–318. MR45 3576MathSciNetMATHCrossRefGoogle Scholar
  155. Rector, D.L. Noetherian cohomology rings and finite loop spaces with torsion. J. Pure Appl. Algebra 32(1984), 191–217.MathSciNetMATHCrossRefGoogle Scholar
  156. Reiner, I.; Roggenkamp, K.W. Integral representations. Lecture Notes in Math., 744, Springer, Berlin, 1979. MR80k:20010MATHGoogle Scholar
  157. Rieffel, M.A. A characterization of the group algebras of the finite groups. Pacific J. Math. 16(1966), 347–363. MR32 2493MathSciNetMATHCrossRefGoogle Scholar
  158. Ritter, J. On a Zassenhaus conjecture about units in group rings. Lecture, Orders and Their Applications, Oberwolfach, 7 June 84.Google Scholar
  159. Ritter, J.; Sehgal, S. Isomorphism of group rings. Arch. Math. (Basel) 40(1983), 32–39. MR84k:16015MathSciNetMATHCrossRefGoogle Scholar
  160. Roggenkamp, K.W. Units in metabelian integral grouprings. I. Jackson’s unit theorem revisited. Quart. J. Math. Oxford Ser. (2) 32(1981), 209–224. MR82i:16009MathSciNetMATHCrossRefGoogle Scholar
  161. Roggenkamp, K.W. The isomorphism problem and units in group rings of finite groups. Groups — St. Andrews 1981, pp.313–327, Cambridge Univ. Press, Cambridge, 1982. MR84m:20017Google Scholar
  162. Roggenkamp, K.W. Automorphisms and isomorphisms of integral group rings of finite groups. Groups-Korea 1983, pp.118–135, Lecture Notes in Math., 1098, Springer, Berlin, 1984.Google Scholar
  163. Roggenkamp, K.W. Isomorphisms of p-adic group rings I. Lecture, Orders and Their Applications, Oberwolfach, 4 June 84.Google Scholar
  164. Roggenkamp, K.W.; Scott, L. Non-splitting examples for normalized units in integral group rings of metacyclic Frobenius groups. C.R. Math. Rep. Acad. Sci. Canada 3(1981), 29–32. MR82b:20009MathSciNetMATHGoogle Scholar
  165. Roggenkamp, K.W.; Scott, L.L. Units in metabelian group rings: non-splitting examples for normalized units. J. Pure Appl. Algebra 27 (1983), 299–314. Zbl.509.16006MathSciNetMATHCrossRefGoogle Scholar
  166. Roggenkamp, K.W.; Scott, L.L. Units in metabelian group rings: non-splitting examples for normalized units. Addendum. J. Pure Appl. Algebra 28(1983), 109. Zbl.509.16006MathSciNetMATHCrossRefGoogle Scholar
  167. Roggenkamp, K.W.; Scott, L.L. Units in group rings: Splittings and the isomorphism problem. To appear, 1985.Google Scholar
  168. Röhl, F. On induced isomorphisms of group rings. Groups-Korea 1983, pp. 136–141, Lecture Notes in Maths., 1098, Springer, Berlin, 1984.CrossRefGoogle Scholar
  169. Röhl, F. On graded algebras associated to isomorphic modular group algebras. To appear, 198x.Google Scholar
  170. Roitman, M. A complete set of invariants for finite groups and other results. Adv. in Math. 41(1981), 301–311. MR83c:20009MathSciNetMATHCrossRefGoogle Scholar
  171. Rosenberg, A.; Zelinsky, D. Automorphisms of separable algebras. Pacific J. Math. 11(1961), 1109–1117. MR26 6215MathSciNetMATHCrossRefGoogle Scholar
  172. Rossa, A.R. Group rings of p-groups over the ring of integral p-adic numbers. (Russian) Sibirsk. Mat. Zh. 9(1968), 220–222. MR36 6514MathSciNetMATHGoogle Scholar
  173. Saksonov, A.I. Certain integer-valued rings associated with a finite group. (Russian) Dokl. Akad. Nauk SSSR 171(1966), 529–532. = Soviet Math. Dokl. 7(1966), 1513–1516. MR34 7676MathSciNetGoogle Scholar
  174. Saksonov, A.I. The integral ring of characters of a finite group. (Russian) Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 1966, no.3, 69–76. MR35 269Google Scholar
  175. Saksonov, A.I. On group rings of finite p-groups over certain integral domains. (Russian) Dokl. Akad. Nauk BSSR 11(1967), 204–207. MR35 270MathSciNetMATHGoogle Scholar
  176. Saksonov, A.I. Group-algebras of finite groups over a number field. (Russian) Dokl. Akad. Nauk BSSR 11(1967), 302–305. MR35 1681MathSciNetGoogle Scholar
  177. Saksonov, A.I. Group rings of finite groups. I. (Russian) Publ. Math. Debrecen 18 (1971), 187–209. MR46 5425MathSciNetMATHGoogle Scholar
  178. Saksonov, A.I. Group rings of finite groups. II. (Russian) Publ. Math. Debrecen 19 (1972), 65–86 (1973). MR48 2238MathSciNetMATHGoogle Scholar
  179. Sandling, R. Note on the integral group ring problem. Math. Z. 124(1972), 255–258. MR45 3594MathSciNetMATHCrossRefGoogle Scholar
  180. Sandling, R. Group rings of circle and unit groups. Math. Z. 140(1974), 195–202. MR52 3217MathSciNetMATHCrossRefGoogle Scholar
  181. Sandling, R. Graham Higman’s thesis "Units in group rings". Integral Representations and Applications, pp.93–116, Lecture Notes in Math., 882, Springer, Berlin, 1981. MR83g:20009CrossRefGoogle Scholar
  182. Sandling, R. Computer calculations of units in modular group algebras. Lecture, Orders and Their Applications, Oberwolfach, 8 June 84.Google Scholar
  183. Sandling, R. Units in the modular group algebra of a finite abelian p-group. J. Pure Appl. Algebra 33(1984), 337–346.MathSciNetMATHCrossRefGoogle Scholar
  184. Scharlau, W. Quadratic and Hermitian Forms. Springer, Berlin, 1985.MATHCrossRefGoogle Scholar
  185. Scott, L.L. Isomorphisms of p-adic group rings. II. Lecture, Orders and Their Applications, Oberwolfach, 5 June 84.Google Scholar
  186. Sehgal, Sudarshan K. On the isomorphism of group algebras. Math. Z. 95(1967), 71–75. MR34 5950MathSciNetMATHCrossRefGoogle Scholar
  187. Sehgal, S.K. On the isomorphism of integral group rings. I. Canad. J. Math. 21(1969), 410–413. MR41 366MathSciNetMATHCrossRefGoogle Scholar
  188. Sehgal, S.K. On the isomorphism of integral group rings. II. Canad. J. Math. 21(1969), 1182–1188. MR42 392MathSciNetMATHCrossRefGoogle Scholar
  189. Sehgal, S.K. Isomorphism of p-adic group rings. J. Number Theory 2(1970), 500–508. MR42 1917MathSciNetMATHCrossRefGoogle Scholar
  190. Sehgal, S.K. Topics in Group Rings. Dekker, New York, 1978. MR80j:16001MATHGoogle Scholar
  191. Sehgal, Sudarshan K.; Sehgal, Surinder K.; Zassenhaus, Hans J. Isomorphism of integral group rings of abelian by nilpotent class two groups. Comm. Algebra 12(1984), 2401–2407.MathSciNetMATHCrossRefGoogle Scholar
  192. Sekiguchi, Katsusuke. On the units of integral group rings. Tokyo J. Math. 3(1980), 149–162. MR81k:20010MathSciNetMATHCrossRefGoogle Scholar
  193. Serre, J.-P. Arithmetic groups. Homological Group Theory, pp.105–136, Cambridge Univ. Press, Cambridge, 1979. MR82b:22021CrossRefGoogle Scholar
  194. Small, L.W. (ed.). Reviews in Ring Theory. Amer. Math. Soc., Providence, 1981.MATHGoogle Scholar
  195. Smith, S.D. (Review of Isaacs 1976). Math. Rev. 57(1979), 60Google Scholar
  196. Speiser, A., Die Theorie der Gruppen von endlicher Ordnung. Zweite Auflage. Springer, Berlin, 1927. F.d.M.53,104MATHCrossRefGoogle Scholar
  197. Stallings, J. Homology and central series of groups. J. Algebra 2(1965), 170–181. MR31 232MathSciNetMATHCrossRefGoogle Scholar
  198. Steinberg, R. Lectures on Chevalley Groups. Yale Univ., New Haven, 1968. MR57 6215MATHGoogle Scholar
  199. Takahashi, Shuichi. A characterization of group rings as a special class of Hopf algebras. Canad. Math. Bull. 8(1965), 465–475. MR32 2479MathSciNetMATHCrossRefGoogle Scholar
  200. Takahashi, Shuichi. Anneaux tordus de groupes comme des anneaux de Hilbert. J. Algebra 20(1972), 161–166. MR44 2852MathSciNetMATHCrossRefGoogle Scholar
  201. Thrall, R.M. Conference on Algebra, Univ. Michigan, 25–28 July 1947.Google Scholar
  202. Valenza, R.J. Strongly determined subgroups. Comm. Algebra 9(1981), 669–677. MR82c:20012MathSciNetMATHCrossRefGoogle Scholar
  203. Ward, H.N. Some results on the group algebra of a group over a prime field. Seminar on Finite Groups and Related Topics, pp.13–19. Mimeographed notes, Harvard Univ., 1960–1961.Google Scholar
  204. Weidman, D.R. The character ring of a finite group. Illinois J. Math. 9(1965), 462–467. MR31 1298MathSciNetMATHGoogle Scholar
  205. Weil, A. Algebras with involutions and the classical groups. J. Indian Math. Soc. (N.S.)24(1960), 589–623. MR25 147MathSciNetMATHGoogle Scholar
  206. Weller, W.R. The units of the integral group ring ZD4. D.Ed. thesis, Pennsylvania State Univ., 1972. DAI33(1973),p.4921BGoogle Scholar
  207. Whitcomb, A. The group ring problem. Ph.D. thesis, Univ. of Chicago, 1968.Google Scholar
  208. Yap, W.-L. On the isomorphism problem for group rings. Master’s thesis, Queen’s Univ., Kingston, Ontario, 1972.Google Scholar
  209. Yu, C.-Y. Group rings over modular fields. Ph.D. thesis, Pennsylvania State Univ., 1970. DAI32(1972),p.446BGoogle Scholar
  210. Zalesskii, A.E.; Mihalev, A.V. Group rings. (Russian) Current problems in mathematics, Vol.2, pp.5–118, Akad. Nauk SSSR VINITI, Moscow, 1973. = J. Soviet Math. 4(1975), 1–78. MR54 2723Google Scholar
  211. Zassenhaus, H. Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der Charakteristik p zuzuordnen. Abh. Math. Sem. Hansische Univ. 13(1939), 200–207. Zbl.21.200MathSciNetMATHCrossRefGoogle Scholar
  212. Zassenhaus, H. On the torsion units of finite group rings. Estudos de matemática em homenagem ao Prof. A. Almeida Costa, pp.119–126. Instituto de Alta Cultura, Lisbon, 1974. MR51 12922Google Scholar
  213. Zassenhaus, H. On A-group rings. Lecture, Orders and Their Applications, Oberwolfach, 6 June 84.Google Scholar
  214. Zhmud’, È.M. On kernels of homomorphisms of linear representations of finite groups. (Russian) Mat. Sb.(N.S.)44(86)(1958),353–408. MR20 5236MathSciNetMATHGoogle Scholar
  215. Zhmud’, È.M.; Kurennoi, G.Ch. The finite groups of units of an integral group ring. (Russian) Vestnik Har’kov. Gos. Univ. 1967, no.26, 20–26. MR40 2770Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Robert Sandling
    • 1
  1. 1.Maths. Dept.The UniversityManchester

Personalised recommendations