Number Theory pp 52-100

Applications of Padé approximations to the Grothendieck conjecture on linear differential equations

  • D. V. Chudnovsky
  • G. V. Chudnovsky
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1135)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Katz, Algebraic solutions of differential equations, Invent. Math., 18 (1972), 1–118.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    T. Honda, Algebraic differential equations, Symposia Mathematica v.24, Academic Press, N.Y., 1981, 169–204.Google Scholar
  3. [3]
    N. Katz, A conjecture in the arithmetic theory of differential equations, Bull. Soc. Math. France 110 (1982), 203–239; corr. 347–348.MathSciNetMATHGoogle Scholar
  4. [4]
    B. Dwork, Arithmetic theory of differential equations, Symposia Mathematica v.24, Academic Press, N.Y., 1981, 225–243.Google Scholar
  5. [5]
    D.V. Chudnovsky, G.V. Chudnovsky, Applications of Padé approximations to diophantine inequalities in values of G-functions, see preceding paper, this volume.Google Scholar
  6. [6]
    G.V. Chudnovsky, Measures of irrationality, transcendence and algebraic independence.Recent progress, in Journées Arithmétiques 1980 (ed. by J.V. Armitage), Cambridge University Press, 1982, 11–82Google Scholar
  7. [7]
    B. Dwork, P. Robba, Effective p-adic bounds for solutions of homogeneous linear differential equations, Trans. Amer. Math. Soc. 259 (1980), 559–577.MathSciNetMATHGoogle Scholar
  8. [8]
    N. Katz, Nilpotent connections and the monodromy theorem, Publ. Math. I.H.E.S. 39 (1970), 355–412.CrossRefGoogle Scholar
  9. [9]
    E.L. Ince, Ordinary differential equations, Chelsea (reprint), N.Y., 1956.Google Scholar
  10. [10]
    B. Dwork, P. Robba, On natural radii of p-adic convergence, Trans. Amer. Math. Soc. 256 (1979), 199–213.MathSciNetMATHGoogle Scholar
  11. [11]
    E. Bombieri, On G-functions, in Recent Progress in Analytic Number Theory (ed. by H. Halberstam and C. Hooley), Academic Press, N.Y., v. 2, 1981, 1–67.Google Scholar
  12. [12]
    Ch. Hermite, Sur la fonction exponentielle, C.R. Acad. Sci. Paris 77 (1873), 18–24, 74–79, 226–233, 285–293 (Oeuvres v. III, 150–181).Google Scholar
  13. [13]
    K. Mahler, Ein Beweis des Thue-Siegelschen Satzes über die Approximation algebraischen Zahlen für binomische Gleichungen, Math. Ann. 105 (1931), 267–276.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    H. Jager, A multidimensional generalization of the Padé table, Indagat. Math. 26 (1964), 192–249.MATHGoogle Scholar
  15. [15]
    G.V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. 117 (1983), 325–382.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    G.V. Chudnovsky, Number-theoretic applications of polynomials with rational coefficients defined by extremality conditions, in Arithmetic and Geometry, v. 1 (ed. by M. Artin and J. Tate), Birkhauser, Boston, 1983, 61–106.CrossRefGoogle Scholar
  17. [17]
    A. Baker, Transcendental Number Theory, Cambridge University Press, 1979.Google Scholar
  18. [18]
    S. Lang, Algebra, Addison-Wesley, 1965.Google Scholar
  19. [19]
    E. Whittaker, G. Watson, Modern Analysis, Cambridge, 1927.Google Scholar
  20. [20]
    Ju.I. Manin, Rational points on algebraic curves over function fields, Amer. Math. Soc. Translations (2) 50 (1966), 189–234.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    J. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    M. Hazewinkel, Formal Groups and Applications, Academic Press, 1978.Google Scholar
  23. [23]
    C.H. Clemens, A Scrapbook of Complex Curve Theory, Plenum Press, N.Y., 1980.MATHGoogle Scholar
  24. [24]
    S. Lang, H. Trotter, Frobenius Distribution in GL2-Extensions, Lecture Notes in Math., v.504, Springer, 1976.Google Scholar
  25. [25]
    B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math., 18 (1972), 183–266.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    D.V. Chudnovsky, G.V. Chudnovsky, Remark on the nature of the spectrum of Lame equation. Problem from transcendence theory, Lett. Nuovo Cimento 29 (1980), 545–550.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    D. Mumford, An algebraico-geometric construction of commuting operators and of solutions to the Toda lattice equations, Kortewg-de Vries equations and related non linear equations, Proc. Intern. Symp. Algebraic Geometry, Kyoto, 1977, 115–153.Google Scholar
  28. [28]
    H.P. McKean, P. van Moerbeke, The spectrum of Hill's equation, Invent. Math. 30 (1975), 217–274.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    J. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Math., v.352, Springer, 1973.Google Scholar
  30. [30]
    A. Krazer, Lehrbush der Thetafunctionen, Teubner, 1903.Google Scholar
  31. [31]
    H.F. Baker, Abel's Theorem and the Allied Theory Including the Theory of the Theta Functions, Cambridge, 1897.Google Scholar
  32. [32]
    N.G. Chebotarev, Theory of Algebraic Functions, OGIZ, Moscow, 1948 (Russian).MATHGoogle Scholar
  33. [33]
    C.L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys. Math. Kl. 1, 1929.Google Scholar
  34. [34]
    D. Mumford, Tata lectures on Theta II, Birkhäuser, Boston, 1984.MATHGoogle Scholar
  35. [35]
    J.L. Burchall, T.W. Chaundy, Commutative ordinary differential operators, I, II, Proc. London Math. Soc. 21 (1922), 420–440; Proc. Royal Soc. London 118 (1928), 557–583.Google Scholar
  36. [36]
    E. Borel, Leçons sur les fonctions meromorphes, Paris, 1903.Google Scholar
  37. [37]
    S. Lang, Introduction to transcendental numbers, Addison-Wesley, 1966.Google Scholar
  38. [38]
    T. Schneider, Enführung in die transcendenten zahlen, Springer, 1957.Google Scholar
  39. [39]
    E. Bombieri, S. Lang, Analytic subgroups of group varieties, Invent. Math. 11 (1970), 1–14.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    E. Bombieri, Algebraic values of meromoiphic maps, Invent. Math. 10 (1970), 267–287; addendum, ibid. 11 (1970), 163–166.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • D. V. Chudnovsky
    • 1
  • G. V. Chudnovsky
    • 1
  1. 1.Department of MathematicsColumbia UniversityNew York

Personalised recommendations