Advertisement

Fourier integral operators with complex-valued phase functions

  • Anders Melin
  • Johannes Sjöstrand
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 459)

Keywords

Phase Function Analytic Extension Principal Symbol Local Representative Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duistermaat, J.J. and Hörmander, L., Fourier integral operators II. Acta Math., 128(1972), 183–269.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Duistermaat, J.J. and Sjöstrand, J., A global construction for pseudo-differential operators with non-involutive characteristics. Inventiones math., 20(1973), 209–225.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hörmander, L., Fourier integral operators I. Acta Math., 127(1971), 79–183.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hörmander, L., Lecture notes at the Nordic Summer School of Mathematics, 1969.Google Scholar
  5. 5.
    Hörmander, L., On the existence and the regularity of solutions of linear pseudo-differential operators. Enseignement Math., 17(1971), 99–163.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hörmander, L., Pseudo-differential operators and hypoelliptic equations. Amer. Math. Soc. Symp. on Singular Integral Operators, 1966, 138–183.Google Scholar
  7. 7.
    Hörmander, L., Pseudo-differential operators and non-elliptic boundary problems Ann. Math., 83(1966), 129–209.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kucherenko, V.V., Hamilton-Jacobi equations in a complex non-analytic situation. Dokl. Akad. Nauk SSSR, 213(1973), 1021–1024.MathSciNetGoogle Scholar
  9. 9.
    Kucherenko, V.V., Maslov’s canonical operator on a germ of complex, almost analytic manifold. Dokl. Akad. Nauk SSSR, 213(1973), 1251–1254.MathSciNetGoogle Scholar
  10. 10.
    Leray, J., Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III). Bull. Soc. math. France, 87(1959), 81–180.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Maslov, V., The characteristics of pseudo-differential operators and difference schemes. Actes Congrès Intern. Math. Nice 1970, Tome 2, 755–769.Google Scholar
  12. 12.
    Nirenberg, L., A proof of the Malgrange preparation theorem. Proc. Liverpool Singularities Symp. I, Dept. pure Math. Univ. Liverpool 1969–1970, (1971), 97–105.Google Scholar
  13. 13.
    Nirenberg, L. and Treves, F., On local solvability of linear partial differential equations. Part I. Comm. Pure Appl. Math., 23(1970), 1–38.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wells, R.O. Jr, Compact real submanifolds of a complex manifold with non-degenerate holomorphic tangent bundles. Math. Ann., 179(1969), 123–129.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Anders Melin
  • Johannes Sjöstrand

There are no affiliations available

Personalised recommendations