L'hypercontractivité et son utilisation en théorie des semigroupes

  • Dominique Bakry
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1581)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [A] Aubin (T)— Non linear analysis on manifolds, Monge-Ampère equations, Springer, Berlin-Heidelberg-New-York, 1982.CrossRefMATHGoogle Scholar
  2. [Ba1] Bakry (D)— Étude des transformations de Riesz dans les variétés à courbure minorée, Séminaire de probabilités XXI, Lecture Notes in Math. 1247, 1987, Springer, p.137–172.Google Scholar
  3. [Ba2] Bakry (D)— La propriété de sous-harmonicité des diffusions dans les variétés, Séminaire de probabilités XXII, Lecture Notes in Math. 1321, 1988, Springer, p.1–50.Google Scholar
  4. [Ba3] Bakry (D.)— Sur l'interpolation complexe des semigroupes de diffusion, Séminaire de probabilités XXIII, Lectures in Math. 1372, 1989, Springer, p.1–20.Google Scholar
  5. [Ba4] Bakry, D.— Inégalités de Sobolev faibles: un critère Γ2, Séminaire de Probabilités XXV, Lecture Notes in Math. 1485, 1991, Springer, p.234–261.Google Scholar
  6. [Ba5] Bakry (D.)Ricci curvature and dimension for diffusion semigroups, Stochastic Processes and their applications, S. Albeverio & al, ed., 1990, Kluwer Ac.Google Scholar
  7. [BE1] Bakry (D), Emery (M)— Hypercontractivité des semigroupes de diffusion, Comptes Rendus Acad. Sc., t. 299, série 1, no 15, 1984, p.775–778.MathSciNetMATHGoogle Scholar
  8. [BE2] Bakry (D), Emery (M)— Inégalités de Sobolev pour un semigroupe symétrique, Comptes Rendus Acad. Sc., t. 301, série 1, no 8, 1985, p.411–413.MathSciNetMATHGoogle Scholar
  9. [BE3] Bakry (D), Emery (M)— Diffusions hypercontractives, Séminaire de probabilités XIX, Lecture Notes in Math. 1123, 1985, Springer, p.177–206.Google Scholar
  10. [Be1] Beckner (W)— Inequalities in Fourier analysis, Ann. of Math., vol. 102, 1975, p.159–182.MathSciNetCrossRefMATHGoogle Scholar
  11. [Be2] Beckner (W)— A generalized Poincaré inequality for Gaussian measures, Proc. AMS, vol. 105, 1989, p.397–400.MathSciNetMATHGoogle Scholar
  12. [BG] Blumenthal (R), Getoor (R)Markov processes and potential theory, Ac. Press, New-York, 1968.MATHGoogle Scholar
  13. [BH] Bouleau (N), Hirsh (F)Dirichlet forms and analysis on Wiener space, de Gruyter, Berlin-New-York, 1991.CrossRefGoogle Scholar
  14. [BJ] Borell (C), Janson (S)— Converse hypercontractivity., Séminaire d'initiation à l'analyse, 1981.Google Scholar
  15. [BM] Bakry, (D), Michel, (D)— Inégalités de Sobolev et minorations du semigroupe de la chaleur, Ann. Fac. Sc. Toulouse, vol. XI, n. 2, 1990, p.23–66.MathSciNetCrossRefMATHGoogle Scholar
  16. [Bo] Borel (C)— Positivity improving operators and hypercontractivity, Math. Z., vol. 180, 1982, p.225–234.MathSciNetCrossRefMATHGoogle Scholar
  17. [BT] Ben-Taleb (A)— Inégalités de Sobolev pour les semigroupes ultrasphériques, Comptes Rendus Acad. Sci., 1993, à paraître.Google Scholar
  18. [Ca] Carlen (E)— Superadditivity of Fisher's information and logarithmic Sobolev inequalities, J. Funct. Anal., vol. 101, 1991, p.194–211.MathSciNetCrossRefMATHGoogle Scholar
  19. [Ch] Chen (L)Poincaré type inequalities via stochastic integrals, Z. Wahr. v. Geb., vol. 69, 1985, p.251–277.MATHGoogle Scholar
  20. [CKS] Carlen (E), Kusuoka (S), Stroock (DW)— Upperbounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré, vol. 23, 1987, p.245–287.MathSciNetMATHGoogle Scholar
  21. [CSCV] Coulhon (T), Saloff-Costes (L), Varopoulos (N)— Analysis and geometry on groups, Camb. Univ. Press, 1992.Google Scholar
  22. [Da] Davies (EB)— Heat kernels and spectral theory, Cambridge University Press, Berlin-Heidelberg-New-York, 1989.CrossRefMATHGoogle Scholar
  23. [DaSi] Davies (EB), Simon (B)— Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians, J. Funct. Anal., vol. 59, 1984, p.335–395.MathSciNetCrossRefMATHGoogle Scholar
  24. [DS] Deuschel (JD), Stroock (DW)— Large Deviations, Ac. Press, Berlin-Heidelberg-New-York, 1989.MATHGoogle Scholar
  25. [EY] Emery (M), Yukich (J)— A simple proof of the logarithmic Sobolev inequality on the circle, Séminaire de probabilités XXI, Lecture Notes in Math. 1247, 1987, Springer, p.173–175.Google Scholar
  26. [G] Gross (L)— Logarithmic Sobolev inequalities, Amer. J. Math., vol. 97, 1976, p.1061–1083.MathSciNetCrossRefMATHGoogle Scholar
  27. [G2] Gross (L)— Logarithmic Sobolev inequalities and contractivity properties of semigroups, preprint, 1992.Google Scholar
  28. [HKS] Hoegh-Krohn (R), Simon (B)— Hypercontractive semigroups, J. Funct. Anal., vol. 9, 1972, p. 1061–1083.MathSciNetGoogle Scholar
  29. [KKR] Kavian (O), Kerkyacharian (G), Roynette (B)— Quelques remarques sur l'ultracontractivité, preprint, 1991.Google Scholar
  30. [KS] Korzeniowski (A), Stroock (D)— An example in the theory of hypercontractive semigroups, Proc. A.M.S., vol. 94, 1985, p.87–90.MathSciNetCrossRefMATHGoogle Scholar
  31. [L1] Ledoux (M)— On an integral citerion for hypercontractivity of diffusion semigroups and extremal functions, J. Funct. Anal., vol. 104, 1992.Google Scholar
  32. [M1] Meyer (PA)— Note sur le processus d'Ornstein-Uhlenbeck, Séminaire de probabilités XVI, Lecture Notes in Math. 920, 1982, Springer, p.95–133.Google Scholar
  33. [MW] Mueller (C), Weissler (F)— Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere, J. Funct. Anal., vol. 48, 1982, p.252–283.MathSciNetCrossRefMATHGoogle Scholar
  34. [N] Nelson (E)— The free Markov field, J. Funct. Anal., vol. 12, 1973, p.211–227.CrossRefMATHGoogle Scholar
  35. [Nev] Neveu (J)— Sur l'espérance conditionnelle par rapport à un mouvement brownien, Ann. Inst. H. Poincarré, vol. 12, 1976, p.105–109.MathSciNetMATHGoogle Scholar
  36. [RS] Reed (M), Simon (B)— Methods of modern mathematical physics, Ac. Press, New-York, 1975.MATHGoogle Scholar
  37. [R1] Rothaus (O)— Logarithmic Sobolev inequalities and the spectrum of Shrödinger operators, J. Funct. Anal., vol. 42, 1981, p.110–120.MathSciNetCrossRefMATHGoogle Scholar
  38. [R2] Rothaus (O)— Analytic inequalities, isoperimetric inequalities, and logarithmic Sobolev inequalities, J. Funct. Anal., vol. 64, 1985, p.296–313.MathSciNetCrossRefMATHGoogle Scholar
  39. [R3] Rothaus (O)— Logarithmic Sobolev inequalities and the spectrum of Sturm-Liouville operators, J. Funct. Anal., vol. 39, 1980, p.42–56.MathSciNetCrossRefMATHGoogle Scholar
  40. [R4] Rothaus (O)— Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Funct. Anal., vol. 42, 1981, p.102–109.MathSciNetCrossRefMATHGoogle Scholar
  41. [R5] Rothaus (O)— Hypercontractivity and the Bakry-Emery criterion for compact Lie groups, J. Funct. Anal., vol. 65, 1986, p.358–367.MathSciNetCrossRefMATHGoogle Scholar
  42. [Ste] Stein (EM)— Singular integrals and differentiability properties of functions, Princeton, 1970.Google Scholar
  43. [Str] Strichartz (R)— Analysis of the Laplacian of the complete Riemannian manifold, J. Funct. Anal., vol. 52, 1983, p.48–79.MathSciNetCrossRefMATHGoogle Scholar
  44. [V] Varopoulos (N)Hardy-Littlewood theory for semigroups, J. Funct. Anal., vol. 63, 1985, p.240–260.MathSciNetCrossRefMATHGoogle Scholar
  45. [W] Weissler (F)— Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal., vol. 48, 1982, p.252–283.MathSciNetCrossRefGoogle Scholar
  46. [Yos] Yosida (K)— Functionnal analysis, 4th ed., Springer, Berlin-Heidelberg-New-York, 1974. *** DIRECT SUPPORT *** A00I6B38 00002CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Dominique Bakry
    • 1
  1. 1.Laboratoire de Statistiques et ProbabilitésUniversité Paul SabatierToulouse CedexFrance

Personalised recommendations