A simple proof of the support theorem for diffusion processes

  • Annie Millet
  • Marta Sanz-Solé
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1583)


Stochastic Differential Equation Stochastic Partial Differential Equation Pitman Research Note Conjugate Exponent Support Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Aida, S. Kusuoka and D. Stroock, On the Support of Wiener Functionals, Asymptotic problems in probability Theory: Wiener functionals and asymptotics, Longman Sci. & Tech., Pitman Research Notes in Math. Series 294, N.Y., 3–34, (1993).Google Scholar
  2. [2]
    G. Ben Arous and M. Gradinaru, Normes Höldériennes et support des diffusions, C.R. Acad. Sc. Paris, t. 316, Série 1 n. 3, 283–286, (1993).zbMATHGoogle Scholar
  3. [3]
    G. Ben Arous, M. Gradinaru and M. Ledoux, Hölder norms and the support theorem for diffusions, preprint.Google Scholar
  4. [4]
    Z. Ciesielski, On the isomorphisms of the spaces Hα and m, Bull. Acad. Pol. Sc., 8, 217–222 (1960).zbMATHGoogle Scholar
  5. [5]
    I. Gyöngy and T. Pröhle, On the approximation of stochastic differential equations and on Stroock-Varadhan's support theorem, Computers Math. Applic, 19, 65–70 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Amsterdam, Oxford, New York: North Holland: Tokyo: Kodansha 1981.zbMATHGoogle Scholar
  7. [7]
    V. Mackevičius, On the Support of the Solution of Stochastic Differential Equations, Lietuvos Matematikow Rinkings XXXVI (1), 91–98 (1986).Google Scholar
  8. [8]
    A. Millet and M. Sanz-Solé, The Support of an Hyperbolic Stochastic Partial Differential Equation, Probability Theory and Related Fields, to appear, Prépublication du Laboratoire de Probabilités de l'Université Paris VI n.° 150, 1993.Google Scholar
  9. [9]
    D. W. Stroock and S. R. S. Varadhan, On the Support of Diffusion Processes with Applications to the Strong Maximum Principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III, 333–359, Univ. California Press, Berkeley, 1972.zbMATHGoogle Scholar
  10. [10]
    D. W. Stroock and S. R. S. Varadhan, On Degenerate Elliptic-Parabolic Operators of Second Order and their Associated Diffusions, Comm. on Pure and Appl. Math. Vol. XXV, 651–713 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    D. W. Stroock and S. R. S. Varadhan, Multidimensional processes, Springer-Verlag, Berlin Heildelberg, New York, 1979. *** DIRECT SUPPORT *** A00I6B40 00002zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Annie Millet
    • 1
    • 2
  • Marta Sanz-Solé
    • 3
  1. 1.Université Paris XFrance
  2. 2.Laboratoire de Probabilités URA 224Université Paris VIParis Cedex 05France
  3. 3.Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations