On the wedding of certain dynamical processes in disordered complex materials to the theory of stable (Lévy) distribution functions

  • Elliott W. Montroll
  • Michael F. Shlesinger
Conference Lectures
Part of the Lecture Notes in Mathematics book series (LNM, volume 1035)


We review and comment on styles of applied mathematics before exhibiting our own in regard to relating the theory of Lévy's stable distributions to dynamic processes in complex disordered materials. Lévy's probability distributions have long tails, infinite moments and elegant scaling properties. Our first example connects intermittant currents in certain xerographic films to a Lévy distribution of waiting times for the jumping of charges out of a distribution of deep traps. We then extend our analysis from transport to electron-hole recombination reactions in amorphous materials. A Lévy distribution of first passage times appears both in this recombination problem as well as in the dielectric relaxation phenomena described by the Williams-Watts formula. Lastly, the most famous scaling problem, "1/f noise", is shown to be related to a log-normal distribution of relaxation times. We derive the log-normal distribution in a generic fashion and show it to be a limiting form of a Lévy distribution.


Dielectric Relaxation Stable Distribution Deep Trap Dispersive Transport Xerox Corporation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Courant and D. Hilbert, Methoden der mathematischen Physik (Berlin, Springer, 1924).CrossRefzbMATHGoogle Scholar
  2. 2.
    F. Bloch, Physics Today, December 1976, p. 23.Google Scholar
  3. 3.
    E. Schrodinger, Collected Papers on Wave Mechanics (Blackie, London 1927; Reprint Edition, Chelsea, N.Y. 1978).Google Scholar
  4. 4.
    For survey of early work on long range radio propagation see H.R. Mimno Rev. Mod. Phys. 9, 1 (1937).Google Scholar
  5. 5.
    O. Heaviside, Encylopedia Britannica, Tenth edition vol. 33.Google Scholar
  6. 6.
    G.N. Watson, Proc. Roy. Soc. 95, 83 (1919).ADSCrossRefGoogle Scholar
  7. 7.
    G.N. Watson, Proc. Roy. Soc. 95, 546 (1919).ADSCrossRefGoogle Scholar
  8. 8.
    G.N. Watson, Theory of Bessel Functions (Cambridge Univ. Press, 1922).Google Scholar
  9. 9.
    G.N. Watson, Quart. J. Math. Oxford 10, 266 (1939).ADSCrossRefGoogle Scholar
  10. 10.
    V. Weisskopf, in proceedings of General Elective International Symposium on Sciences, Invention, and Social Change, p. 19, Albert Rosenfeld (editor), Schenectady and Albany, N.Y. (1978).Google Scholar
  11. 11.
    C. Eisenhart, J. Wash. Acad. of Sci. 54, 24 (1964).Google Scholar
  12. 12.
    A. De Moivre, Doctrine of Chances (1756 edition, this has recently been reprinted by Chelsea Press, 1967).Google Scholar
  13. 13.
    A. Cauchy, Compte Rendus, 37, 198 (185). Also in Oeuves Completes ser. 1, 12, p. 94.Google Scholar
  14. 14.
    F. Bernstein, Math. Ann. 79, 265 (1919).CrossRefGoogle Scholar
  15. 15.
    B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, San Francisco, 1982).zbMATHGoogle Scholar
  16. 16.
    P. Lévy, Calcul des probabilites (Gauthier-Villars, Paris, 1925).zbMATHGoogle Scholar
  17. 17.
    P. Lévy, Théorie de l'addition des variables aléatoires (Gauthier-Villars, Paris, 1937).zbMATHGoogle Scholar
  18. 18.
    A. Wintner, Duke Math. J. 8, 678 (1941).MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Bochner, Duke Math. J. 3, 726 (1937).MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Bochner, Lectures on Fourier Integrals (Princeton University Press, 1959).Google Scholar
  21. 21.
    W. Feller, An Introduction to Probability Theory and its Applications. Vol. II. (John Willey & Sons, New York) (1966).zbMATHGoogle Scholar
  22. 22.
    B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Mass. (1954).zbMATHGoogle Scholar
  23. 23.
    N.F. Mott. Rev. Mod. Phys. 50 203, (1978).ADSCrossRefGoogle Scholar
  24. 24.
    H. Scher and E.W. Montroll, Phys. Rev. B12, 2455, (1975).ADSCrossRefGoogle Scholar
  25. 25.
    John H. Dessauer, My Years with Xerox, (Woodhill Pub). 1979.Google Scholar
  26. 26.
    H. Scher and M. Lax, Phys. Rev. B7, 4491 (1973).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E.W. Montroll and G.H. Weiss, J. Math. Phys 6, 167 (1965).ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Klafter and R. Silbey, Phys. Rev. Lett. 44, 55 (1980).ADSCrossRefGoogle Scholar
  29. 29.
    V.M. Kenkre, E.W. Montroll, and M.F. Shlesinger, J. Stat. Phys. 9, 45 (1973).ADSCrossRefGoogle Scholar
  30. 30.
    E.W. Montroll and H. Scher, J. Stat. Phys. 9, 101 (1973)ADSCrossRefGoogle Scholar
  31. 31.
    M.F. Shlesinger, J. Stat. Phys. 10, 421 (1974).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    M.F. Shlesinger and B.D. Hughes, Physica A109 (1981).Google Scholar
  33. 33.
    M.F. Shlesinger and E.W. Montroll (this volume).Google Scholar
  34. 34.
    G. Pfister and H. Scher, Phys. Rev. B15, 2067 (1977).ADSGoogle Scholar
  35. 35.
    H. Scher, J. de Physique (Paris) Colloq. 42, C4, 547 (1981).Google Scholar
  36. 36.
    M.F. Shlesinger, J. Chem. Phys. 70, 4813 (1979).ADSCrossRefGoogle Scholar
  37. 37.
    E.W. Montroll, J. Math. Phys. 10, 753 (1969).ADSCrossRefGoogle Scholar
  38. 38.
    B. Movaghar, J. Phys. C., Solid State Phys. 13, 4915 (1980).ADSCrossRefGoogle Scholar
  39. 39.
    A. Blumen, J. Klafter, and G. Zumofen, Phys. Rev. B27, 3429 (1983).ADSCrossRefGoogle Scholar
  40. 40.
    D. Bedeaux, K. Lindenberg, and K.E. Shuler, J. Math. Phys. 12, 2116 (1971).ADSCrossRefGoogle Scholar
  41. 41.
    G. Williams and D. Watts, Trans. Faraday Soc. 66, 80 (1970).CrossRefGoogle Scholar
  42. 42.
    C.T. Moynihan, L.P. Boesch, and N.L. La Berge, Phys. Chem. Glasses 14 122 (1973).Google Scholar
  43. 43.
    K.L. Ngai and C.T. White, Phys. Rev. B.20 2475 (1979).ADSCrossRefGoogle Scholar
  44. 44.
    C.P. Lindsey and G.D. Patterson, J. Chem. Phys. 73, 3348 (1980).ADSCrossRefGoogle Scholar
  45. 45.
    H. Pollard, Bull. Am. Math. Soc. 52, 908 (1946).MathSciNetCrossRefGoogle Scholar
  46. 46.
    E.W. Montroll and J.T. Bendler, J. Stat. Phys. (in press).Google Scholar
  47. 47.
    Sixth Int. Conf. on Noise in Physical Systems. P.H.E. Meijer, R. Mountain, and R.J. Soulen, Jr. eds., (National Bureau of Standards, Washington, D.C.) Special Pub. 614.Google Scholar
  48. 48.
    E.W. Montroll and M.F. Shlesinger, J. Stat. Phys. 32, 209 (1983).ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    E.W. Montroll and M.F. Shlesinger, Proc. Nat. Acad. Sci. (USA) 79, 3380 (1982).ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    W. Shockley, Proc. IRE 45 279 (1957).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Elliott W. Montroll
    • 1
    • 2
  • Michael F. Shlesinger
    • 1
    • 2
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege Park
  2. 2.La Jolla InstituteLa Jolla

Personalised recommendations