Number Theory pp 165-195 | Cite as

Galois coverings of the arithmetic line

  • David Harbater
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1240)

Abstract

This paper concerns Galois branched coverings of the line, first over the complex numbers and then over the p-adics. We construct such covers with arbitrary Galois group, and then descend these to covers defined over number fields. In particular, every finite group is shown to occur as a Galois group over Open image in new window. This is a consequence of a more general result that also implies that complete local domains other than fields are never Hilbertian — thus answering a question of Lang.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ar1]
    M. Artin, Algebraic approximation of structures over complete local rings, Publ. Math., IHES No. 36 (1969), 23–58.Google Scholar
  2. [Ar2]
    M. Artin, Algebraization of formal moduli: I, in Global Analysis: Papers in Honor of K. Kodaira, Princeton Univ. Press, Princeton (1969), 21–71.Google Scholar
  3. [Bec]
    S. Beckmann, Fields of definition of solvable branched coverings, Univ. of Pennsylvania, Ph.D. Thesis (1986), to appear.Google Scholar
  4. [Bel]
    G. V. Belyi, On Galois extensions of a maximal cyclotomic field, Math. USSR Izvestija, 14 (1980), 247–256.MathSciNetCrossRefMATHGoogle Scholar
  5. [CH]
    K. Coombes and D. Harbater, Hurwitz families and arithmetic Galois groups, Duke Math. J. 52 (1985), 821–839.MathSciNetCrossRefMATHGoogle Scholar
  6. [Fr]
    M. Fried, Fields of definition of function fields and Hurwitz families — Groups as Galois groups, Comm. Alg. 5 (1977), 17–82.MathSciNetCrossRefMATHGoogle Scholar
  7. [FB]
    M. Fried and R. Biggers, Moduli spaces of covers and the Hurwitz monodromy group, Crelle's J. 335 (1983), 87–121.MathSciNetMATHGoogle Scholar
  8. [Gr]
    A. Grothendieck and J. Dieudonne, Eléments de Géométrie Algébrique (EGA) III, 1e partie, Publ. Math. IHES No. 11 (1961).Google Scholar
  9. [Hal]
    D. Harbater, Deformation theory and the tame fundamental group, Transactions of AMS 262 (1980), 399–415.MathSciNetCrossRefMATHGoogle Scholar
  10. [Ha2]
    D. Harbater, Mock covers and Galois extensions, J. Alg. 91 (1984), 281–293.MathSciNetCrossRefMATHGoogle Scholar
  11. [Hi]
    D. Hilbert, Über die Irreduzibilitat ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, Crelle's J. 110 (1892), 264–286.MathSciNetGoogle Scholar
  12. [La]
    S. Lang, Fundamentals of Diophantine Geometry, Springer, NY (1983).CrossRefMATHGoogle Scholar
  13. [Le]
    H. W. Lenstra, Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974), 299–325.MathSciNetCrossRefMATHGoogle Scholar
  14. [Ma1]
    B. H. Matzat, Konstruction von Zahl-und Funktionenkörpern mit vorgegebener Galoisgruppe, Crelle's J. 349 (1984), 179–220.MathSciNetMATHGoogle Scholar
  15. [Ma2]
    B. H. Matzat, Über das Umkehproblem der Galoisschen Theorie, Karlsruhe (1985). Preprint.Google Scholar
  16. [No]
    E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1918), 221–229.MathSciNetCrossRefMATHGoogle Scholar
  17. [Sa1]
    D. Saltman, Generic Galois extensions and problems in field theory. Adv. Math. 43 (1982), 250–283.MathSciNetCrossRefMATHGoogle Scholar
  18. [Sa2]
    D. Saltman, Noether's problem over an algebraically closed field, Invent. Math. 77 (1984), 71–84.MathSciNetCrossRefMATHGoogle Scholar
  19. [Se]
    J.-P. Serre, Géométrie Algébrique et Géométrie Analytique, Annales de l'Institut Fourier, VI (1956), 1–42.CrossRefMATHGoogle Scholar
  20. [Sh]
    K.-Y. Shih, On the construction of Galois extensions of function fields and number fields, Math. Ann. 207 (1974), 99–120.MathSciNetCrossRefMATHGoogle Scholar
  21. [Sw]
    R. Swan, Invariant rational functions and a problem of Steenrod, Invent. Math. 7 (1969), 148–158.MathSciNetCrossRefMATHGoogle Scholar
  22. [Th]
    J. Thompson, Some finite groups which appear as Gal(L/K), where K ⊂ Q(un), J. Alg. 89 (1984), 437–499.CrossRefMATHGoogle Scholar
  23. [We]
    A. Weil, The field of definition of a variety, Amer. J. Math. 78 (1956), 509–524.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • David Harbater
    • 1
  1. 1.University of PennsylvaniaUSA

Personalised recommendations