On positive solutions of semilinear periodic-parabolic problems

Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1076)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amann, H.: Periodic solutions of semilinear parabolic equations. In: Nonlinear Analysis, ed. Cesari-Kannan-Weinberger, Academic Press 1978, p. 1–29.Google Scholar
  2. [2]
    Beltramo, A.: Publication to appear.Google Scholar
  3. [3]
    Beltramo, A., P. Hess: On the principal eigenvalue of a periodic-parabolic operator, Preprint.Google Scholar
  4. [4]
    Castro A., A.C. Lazer: Results on periodic solutions of parabolic equations suggested by elliptic theory, Bull. U.M.I. (6) 1-B (1982), 1089–1104.MathSciNetMATHGoogle Scholar
  5. [5]
    Crandall, M.G., P.H. Rabinowitz: Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal. 52 (1973), 161–180.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    de Figueiredo, D.G.: Positive solutions of semilinear elliptic problems, Course Latin-American school of differential equations, Sao Paulo, June 1981.Google Scholar
  7. [7]
    Gossez, J.P., E. Lami Dozo: On the principal eigenvalue of a second order linear elliptic problem, Arch. Rat. Mech. Anal., to appear.Google Scholar
  8. [8]
    Gossez, J.P., E. Lami Dozo: On an estimate for the principal eigenvalue of a linear elliptic problem, to appear in Portug. Math.Google Scholar
  9. [9]
    Hess, P.: On bifurcation and stability of positive solutions of nonlinear elliptic eigenvalue problems. In: Dynamical Systems II, ed. Bednarek-Cesari, Academic Press 1982, p. 103–119.Google Scholar
  10. [10]
    Hess, P.: On the principal eigenvalue of a second order linear elliptic problem with an indefinite weight function, Math. Z. 179 (1982), 237–239.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Hess, P., T. Kato: On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. P.D.E. 5 (1980), 999–1030.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Holland, C.J.: A minimum principle for the principal eigenvalue for second-order linear elliptic equations with natural boundary conditions, Comm. P.A.M. 31 (1978), 509–519.MathSciNetMATHGoogle Scholar
  13. [13]
    Kato, T.: Superconvexity of the spectral radius, and convexity of the spectral bound and type, Math. Z. 180 (1982), 265–273.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Kolesov, Ju.S.: A test for the existence of periodic solutions to parabolic equations, Soviet Math. Dokl. 7 (1966), 1318–1320.MATHGoogle Scholar
  15. [15]
    Krein, M.G., M.A. Rutman: Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Transl. 10 (1962), 199–325.MathSciNetMATHGoogle Scholar
  16. [16]
    Lazer, A.C.: Some remarks on periodic solutions of parabolic differential equations. In: Dynamical Systems II, ed. Bednarek-Cesari, Academic Press 1982, p. 227–246.Google Scholar
  17. [17]
    Protter, M.H., H.F. Weinberger: Maximum Principles in Differential Equations. Prentice Hall 1967.Google Scholar
  18. [18]
    Tanabe, H.: Equations of evolution, Pitman 1979.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • P. Hess
    • 1
  1. 1.Mathematics InstituteUniversity of ZürichZürichSwitzerland

Personalised recommendations