Foncteurs analytiques et espèces de structures

  • André Joyal
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1234)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [B.1]
    M.G. Barratt. Twisted Lie Algebras, Lecture Notes in Math., 658, Springer-Verlag, 1977.Google Scholar
  2. [B.2]
    N. Bourbaki. Groupes et algèbres de Lie, Chap. 2. Actualités Scientifiques et Industrielles, Herman, Paris, 1972.MATHGoogle Scholar
  3. [F.1]
    J. Folkman. The homology groups of a lattice, J. Math. Mech. 15 (1966), 631–636.MathSciNetMATHGoogle Scholar
  4. [G.1]
    A.M. Garsia, S.C. Milne. A Rogers-Ramanujan Bijection, J. Comb. Th. (A) 31 (1981), 289–339.MathSciNetCrossRefMATHGoogle Scholar
  5. [H.1]
    P. Hanlon. The fixed-point partition lattices, Pacific J. Math. 96 (1981), 319–341.MathSciNetCrossRefMATHGoogle Scholar
  6. [J.1]
    A. Joyal. Une théorie combinatoire des séries formelles, Advances in Mathematics, Vol. 42 (1981), 1–82.MathSciNetCrossRefMATHGoogle Scholar
  7. [J.2]
    A. Joyal. Règle des signes en algèbre combinatoire. C. R. Math. Acad. Sci. Soc. Royale Canada, Vol. VII (1985), 285–290.MathSciNetMATHGoogle Scholar
  8. [K.1]
    G.M. Kelly. On clubs and doctrines, in "Category Seminar" (G.M. Kelly, Ed.) Lecture Notes in Mathematics No 420, Springer Verlag, 1974.Google Scholar
  9. [K.2]
    D. Knutson. λ-Rings and the Representation theory of the Symmetric Group. Lecture Notes in Mathematics No 308, Springer Verlag, 1973.Google Scholar
  10. [L.1]
    G. Labelle. Sur l'inversion et l'itération continue des séries formelles, Europ. J. Combin. Vol. 1 (1980), 113–138.MathSciNetCrossRefMATHGoogle Scholar
  11. [M.1]
    I.G. Macdonald. Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.MATHGoogle Scholar
  12. [M.2]
    S. MacLane. Categories for the Working Mathematician, Springer Verlag, New York, 1971.MATHGoogle Scholar
  13. [N.1]
    O. Nava, G.C. Rota. Plethysm, Categories, and Combinatorics, Advances in Mathematics 58 (1985), 61–88.MathSciNetCrossRefMATHGoogle Scholar
  14. [R.1]
    C. Reutenauer. Theorem of Poincaré-Birkhoff-Witt, logarithm, and symmetric group representations of degrees equal to Stirling numbers. Ce volume.Google Scholar
  15. [S.1]
    R. Stanley. Some aspects of groups acting on finite posets, Journal of combinatorial theory, Series A, 32 (1982), 132–161.MathSciNetCrossRefMATHGoogle Scholar
  16. [Y.1]
    Y.N. Yeh. On the Combinatorial Species of Joyal, Thèse, State University of New York at Buffalo, 1985.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • André Joyal
    • 1
  1. 1.Université du Québec à MontréalCanada

Personalised recommendations