Wave equations on homogeneous spaces

  • Sigurdur Helgason
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1077)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    L. Àsgeirsson, Über eine Mitterwertseigenschaft von Lösungen homogener linearer partieller Differentialgleichung 2. Ordnung mit konstanten Koefficienten. Math. Ann. 113(1936), 321–346.CrossRefMATHGoogle Scholar
  2. 2.
    J. Beem and P. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York 1981.MATHGoogle Scholar
  3. 3.
    C.L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. of Math. 103(1976), 395–416.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    H. Freudenthal and de Vries, H. Linear Lie Groups. Academic Press, 1969.Google Scholar
  5. 5.
    F.C. Friedlander, The Wave Equation in Curved Space-Time. Cambridge Univ. Press, 1975.Google Scholar
  6. 6.
    P. Günther, Über einige spezielle Probleme aus der Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung. Ber. Verh. Sächs. Akad. Wiss. Leipzig 102(1957), 1–50.MATHGoogle Scholar
  7. 7.
    _____, Ein Beispiel einer nichttrivialen Huygensschen Differentialgleichung mit vier unabhängigen Variablen. Arch. Rat. Mech. Anal. 18(1965), 103–106.CrossRefMATHGoogle Scholar
  8. 8.
    J. Hadamard, Lectures on Cauchy's Problem in Linear Partial Differential Equations, 2nd Ed. Dover 1952.Google Scholar
  9. 9.
    Harish-Chandra, Differential operators on a semisimple Lie algebra. Amer. J. Math. 79(1957), 87–120.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    _____, Spherical Functions on a semisimple Lie group. Amer. J. Math. 80(1958), 241–310.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    S. Helgason, Partial differential equations on Lie groups. Scand. Math. Congress XIII, Helsinki 1957, 110–115.Google Scholar
  12. 12.
    _____, Differential operators on homogeneous spaces. Acta Math. 102(1959), 239–299.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    _____, Some remarks on the exponential mapping for an affine connection. Math. Scand. 9(1961), 129–146.MathSciNetMATHGoogle Scholar
  14. 14.
    _____, Fundamental solutions of invariant differential operators on symmetric spaces. Amer. J. Math. 86(1964), 565–601.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    _____, Analysis on Lie Groups and Homogeneous Spaces. Conf. Board Math. Sci. Series, No. 14, Amer. Math. Soc. Providence, 1972.Google Scholar
  16. 16.
    _____, Solvability questions for invariant differential operators, pp.517–527, in Proc. 5th Int. Colloq. on "Group Theoretical Methods in Physics" Montreal 1976, Academic Press 1977.Google Scholar
  17. 17.
    _____, Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, 1978.Google Scholar
  18. 18.
    E. Hölder, Poissonsche Wellenformel in nichteuclidischen Räumen. Ber. Verh. Sächs. Akad. Wiss. Leipzig 90(1938), 55–66.MATHGoogle Scholar
  19. 19.
    F. John, Plane Waves and Spherical Means. Interscience, New York, 1955.MATHGoogle Scholar
  20. 20.
    I.A. Kiprijanov, and L.A. Ivanov, The Euler-Poisson-Darboux equation in a Riemannian space. Soviet Math. Dokl. 24 (1981), 331–335.Google Scholar
  21. 21.
    Y. Kosman, Sur les degrées conformes des opérateurs differentiels, C.R. Acad. Sci. Paris. 280(1975), A 229–232.MathSciNetGoogle Scholar
  22. 22.
    P.D. Lax and R.S. Phillips, An example of Huygens' principle. Comm. Pure Appl. Math. 31(1978), 415–423.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    R.K. Sachs and H. Wu, General Relativity for Mathematicians. Springer Verlag, 1977.Google Scholar
  24. 24.
    R. Schimming, A review of Huygens' principle for linear hyperbolic differential equations. Proc. IMU Symposium, "Group Theoretical Methods in Mechanics" Novosibirsk, 1978.Google Scholar
  25. 25.
    J.A. Schouten, Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Massbestimmung auf eine Mannigfaltigkeit mit Euklidischer Massbestimmung. Math. Z. 11(1921), 58–88.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    K. Stellmacher, Ein Beispiel einer Huygensschen Differentialgleichung. Gött. Nachr. 1953, 133–138.Google Scholar
  27. 27.
    O. Tedone, Sull'integrazionne dell'equazione ∂2Ф2/∂t2−∑i∂Ф/∂xi2=0=0. Ann. di Mat. 3(1898), 1–24.CrossRefGoogle Scholar
  28. 28.
    H. Weyl, Reine Infinitesimalgeometrie.Math. Z. 2(1918), 384–411.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12(1960), 21–37.MathSciNetMATHGoogle Scholar
  30. 30.
    B. Ørsted, The conformal invariance of Huygens' principle. J. Differential Geometry 16(1981), 1–9.MathSciNetMATHGoogle Scholar
  31. 31.
    _____, Conformally invariant differential equations and projective geometry. J. Funct. Analysis. 44(1981), 1–23.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Sigurdur Helgason

There are no affiliations available

Personalised recommendations