Harmonic analysis on semisimple symmetric spaces a method of duality

  • Mogens Flensted-Jensen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1077)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berger, M., Les espaces symétriques non compacts. Ann. Sci. Ecole Norm. Sup., 74 (1957), 85–177.MathSciNetMATHGoogle Scholar
  2. [2]
    Clozel, L., Changement de base pour les représentations tempérées des groupes réductive réels. Ann. Sc. E.N.S. (4), 15 (1982), 45–115.MathSciNetMATHGoogle Scholar
  3. [3]
    Dixmier, J., Algebras Enveloppantes, Gauthier-Villars, Paris, 1974.MATHGoogle Scholar
  4. [4]
    Enright, T.J., Varadarajan, V.S., On an infinitesimal characterization of the discrete series. Ann. of Math., 102 (1975), 1–15.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    Faraut, J., Distributions sphériques sur les espaces hyperbolic. J.Math. pures et appl. 58 (1979), 369–444.MathSciNetMATHGoogle Scholar
  6. [6]
    Flensted-Jensen, M., Spherical functions on rank one symmetric spaces and generalizations. Proceedings of symposia in pure mathematics, vol. XXVI, (Amer. Math. Soc. 1973), 339–342.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Flensted-Jensen, M., Spherical functions on a real semisimple Lie group. A method of reduction to the complex case. J. Funct. Anal. 30 (1978), 106–146.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Flensted-Jensen, M., Discrete series for semisimple symmetric spaces. Ann. of Math. 111 (1980), 253–311.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Flensted-Jensen, M., K-finite joint eigenfunctions of U(g)K on a non-Riemannian semisimple symmetric space G/H. In: Non commutative harmonic analysis and Lie groups, Proceedings, Marseille-Luminy 1980, ed. Carmona, J. and Vergne, M..Lecture Notes in Math. 880 (1981) 91–101.CrossRefMATHGoogle Scholar
  10. [10]
    Harish-Chandra, Representations of a semisimple Lie group on a Banach space, I. Trans. Amer. Math. Soc. 75 (1953), 185–243.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    Harish-Chandra, Spherical functions on a semisimple Lie group I and II. Amer. J. Math. 80 (1958), 241–310 and 553–613.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    Harish-Chandra, Discrete series for semisimple Lie groups, I, II. Acta Math. 113 (1965), 241–318, 116 (1966), 1–111.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Harish-Chandra, Harmonic analysis on semisimple Lie groups. Bull. Amer. Math. Soc. 78 (1970), 529–551.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Helgason, S. Differential geometry and symmetric spaces. Academic Press, New York 1962.MATHGoogle Scholar
  15. [15]
    Helgason, S., Fundamental solutions of invariant differential operators on symmetric spaces. Amer. J. Math. 86 (1964), 565–601.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    Helgason, S., A duality for symmetric spaces with applications to group representations. Adv. Math. 5 (1970), 1–154.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Helgason, S., Eigenspaces of the Laplacian; integral representations and irreducibility. J. Functional Analysis 17 (1974), 328–353.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Helgason. S., A duality for symmetric spaces with applications to group representations II. Differential equations and eigenspace representations. Adv. Math. 22 (1976), 187–219.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    Helgason, S., Some results on eigenfunctions on symmetric spaces and eigenspace representations. Math. Scand. 41 (1977), 79–89.MathSciNetMATHGoogle Scholar
  20. [20]
    Helgason, S., Differential geometry, Lie groups and symmetric spaces. Academic Press, New York-San Francisco-London 1978.MATHGoogle Scholar
  21. [21]
    Helgason, S., Groups and geometric analysis I. To appear Academic Press.Google Scholar
  22. [22]
    Kashiwara, M., Kowata, A., Minemura, K., Okamoto, K., Oshima, T. and Tanaka, M., Eigenfunctions of invariant differential operators on a symmetric space. Ann. of Math., 107 (1978), 1–39.MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    Kengmana, T., Characters of the discrete series for pseudo-Riemannian symmetric spaces. Preprint, Harvard University, 1983.Google Scholar
  24. [24]
    Kosters, M.T., Spherical distributions on rank one symmetric spaces. Thesis, University of Leiden, 1983.Google Scholar
  25. [25]
    Knapp, T., Minimal K-type formula. Proceedings of the 1982-Marseille-Luminy Conference.Google Scholar
  26. [26]
    Loos, O., Symmetric spaces, I: General theory. New York-Amsterdam, W.A. Benjamin, Inc., 1969.MATHGoogle Scholar
  27. [27]
    Matsuki, T., The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331–357.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Mostow, G.D., On covariant fiberings of Klein spaces. Amer. J. Math. 77 (1955), 247–278.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    Olafsson, G., Die Langlands-parameter für die Flensted-Jensensche Fundamentale Reihe. To appear.Google Scholar
  30. [30]
    Oshima, T., Poisson transformation of affine symmetric spaces. Proc. Jap. Acad. Ser. A 55 (1979), 323–327.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    Oshima, T., Fourier analysis on semisimple symmetric spaces. In: Non commutative harmonic analysis and Lie groups. Proceedings, Marseille-Luminy 1980, ed. Carmona, J. and Vergne, M. Lecture Notes in Math. 880, (1981), 357–369.CrossRefMATHGoogle Scholar
  32. [32]
    Oshima, T. and Matsuki, T., A complete description of discrete series for semisimple symmetric spaces. Preprint.Google Scholar
  33. [33]
    Oshima, T. and Sekiguchi, J.: Eigenspaces of invariant differential operators on an affine symmetric space, Inventiones Math. 57 (1980), 1–81.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Rossmann, W., The structure of semisimple symmetric spaces. Can. J. Math. 31 (1979), 157–180.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    Schlichtkrull, H., The Langlands parameters of Flensted-Jensen's discrete series for semisimple symmetric spaces, J. Func. Anal. 50 (1983), 133–150.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Schlichtkrull, H., A series of unitary irreducible representations induced from a symmetric subgroup of a semisimple Lie group, Invent. Math. 68 (1982), 497–516.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    Schlichtkrull, H., Applications of hyperfunction Theory to representations of semisimple Lie groups. Rapport 2 a-b, Dept. of Math., University of Copenhagen, April 1983.Google Scholar
  38. [38]
    Schlichtkrull, H., One dimensional K-types in finite dimensional representations of semisimple Lie groups. to appear Math. Scand.Google Scholar
  39. [39]
    Strichartz, R.S., Harmonic analysis on hyperboloids. J. Funct. Anal. 12 (1973), 341–383.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    Vogan, D., Algebraic structure of irreducible representations of semisimple Lie groups. Ann. of Math. 109 (1979), 1–60.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    Wolf, J.A., Spaces of constant curvature. McGraw-Hill, New York, 1967.MATHGoogle Scholar
  42. [42]
    Wolf, J.A., Fineteness of orbit structure for real flag manifolds. Geom. Dedicata 3 (1974), 377–384.CrossRefMATHGoogle Scholar
  43. [43]
    Warner, G., Harmonic analysis on semi-simple Lie groups I and II. New York-Heidelberg-Berlin, Springer-Verlag, 1972.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Mogens Flensted-Jensen
    • 1
  1. 1.Dept. of Mathematics and StatisticsRoyal Veterinary- and Agricultural UniversityCopenhagenDenmark

Personalised recommendations