Advertisement

Graph Theory pp 242-247 | Cite as

On local properties of finite graphs

  • J. Sedláček
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1018)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.Ja. Agakišieva, Graphs, in which the environments of the vertices are simple chains or simple cycles, Dokl. Akad. Nauk Azerb. SSR, 26 (1970), 7–10, (in Russian).Google Scholar
  2. [2]
    S.Ja. Agakišieva, On graphs with prescribed environments of the vertices, Mat. Zametki, 3 (1968), 211–216, (in Russian).MathSciNetGoogle Scholar
  3. [3]
    M. Behzad, G. Chartrand, Introduction to the theory of graphs, Allyn and Bacon, Boston, (1971).zbMATHGoogle Scholar
  4. [4]
    M. Brown, R. Connelly, On graphs with a constant link. New Directions in the theory of graphs, Proc. Third Ann Arbor Conf. on Graph Theory, Univ. of Michigan, Ann Arbor, Mich., 1971, Academic Press, New York, (1973), 19–51.Google Scholar
  5. [5]
    M. Brown, R. Connelly, On graphs with a constant link. II, Discrete Math., 11 (1975), 199–232.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    V.K. Bulitko, A certain local property of a class of graphs, Prikl. Mat. i Programmirovanie, 11 (1974), 8–13, (in Russian).MathSciNetGoogle Scholar
  7. [7]
    V.K. Bulitko, On graphs with prescribed environments of the vertices, Trudy Mat. Inst. Steklov., 133 (1973), 73–94, (in Russian).MathSciNetGoogle Scholar
  8. [8]
    V.K. Bulitko, On the problem of the finiteness of a graph with given vertex neighborhoods, General systems theory, Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, (1972), 76–83, (in Russian).Google Scholar
  9. [9]
    F.C. Bussemaker, S. Čobeljić, D.M. Cvetković, J.J. Seidel, Computer investigation of cubic graphs, Technological University Eindhoven, The Netherlands, Department of Mathematics, (1976).zbMATHGoogle Scholar
  10. [10]
    G. Chartrand, R.J. Gould, A.D. Polimeni, A note on locally connected and hamiltonian-connected graphs, Isr. J. Math., 33 (1979), 5–8.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. Chartrand, R.E. Pippert, Locally connected graphs, Časopis pro pěstováni matematiky, 99 (1974), 158–163.MathSciNetzbMATHGoogle Scholar
  12. [12]
    J. Doyen, X. Hubaut, M. Reynaert, Finite graphs with isomorphic neighbourhoods, Problèmes combinatoires et théorie des graphes, Colloques Orsay 1976, Édition CHRS, Paris (1978), 111.Google Scholar
  13. [13]
    D.P. Geoffroy, D.P. Sumner, An upper bound on the size of largest clique in a graph, J. Graph Theory, 2 (1978), 223–230.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    C.D. Godsil, B.D. McKay, Graphs with regular neighbourhoods, Combinatorial Mathematics VII, Proceedings Newcastle 1979, Lecture Notes in Mathematics 829, Springer-Verlag Berlin-Heidelberg (1980), 127–140.CrossRefGoogle Scholar
  15. [15]
    J.I. Hall, Locally Petersen graphs, J. Graph Theory, 4 (1980), 173–187.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., (1969).zbMATHGoogle Scholar
  17. [17]
    P. Hell, Graphs with given neighborhoods I, Problèmes combinatoires et théorie des graphes, Colloques Orsay 1976, Édition CNRS, Paris, (1978), 219–223.zbMATHGoogle Scholar
  18. [18]
    K.H. Kulkarni, Minimally locally 1-connected graphs, Bull. Austral. Math. Soc., 19 (1978), 77–80.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    K.H. Kulkarni, Sufficient conditions for edge-locally connected and n-connected graphs, Časopis pro pěstování matematiky (to appear).Google Scholar
  20. [20]
    D.J. Oberly, D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian, J. Graph Theory, 3 (1979), 351–356.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Sedláček, Lokální vlastnosti grafů, Časopis pro pěstování matematiky (to appear).Google Scholar
  22. [22]
    D.P. Sumner, Point determination in graphs, Discrete Math., 5 (1973), 179–187.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    L. Szamkołowicz. O pewnych problemach klasyfikacji grafów przez własności grafów otoczeniowych, Instytut Matematyki Politechniki Wrocławskiej, Raport nr 41, Wrocław, (1980).Google Scholar
  24. [24]
    D.W. VanderJagt, Sufficient conditions for locally connected graphs, Časopis pro pěstování matematiky, 99 (1974), 400–404.MathSciNetzbMATHGoogle Scholar
  25. [25]
    V.G. Vizing, Some unsolved problems in the theory of graphs, Uspehi Mat. Nauk, 23, vyp. 6 (144), 1968, 117–134, (in Russian).MathSciNetzbMATHGoogle Scholar
  26. [26]
    A.A. Zykov, Problem 30, Theory of graphs and its applications, Proceedings Smolenice 1963, Publishing House of the Czechoslovak Academy of Sciences, Prague, (1964), 164–165.Google Scholar
  27. [27]
    A.A. Zykov, Theory of Finite Graphs I, Novosibirsk, (1969), (in Russian).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Sedláček
    • 1
  1. 1.Mú ČsavPraha 1Czech Republic

Personalised recommendations