Number Theory pp 168-175 | Cite as

p-adic gamma functions and their applications

  • Jack Diamond
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1052)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Barsky, On Morita's p-adic gamma function, Math. Proc. Camb. Phil. Soc. 89 (1981), 23–27.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. Boyarsky, p-adic gamma functions and Dwork cohomology, Trans. A.M.S., 257 (1980), 359–369.MathSciNetMATHGoogle Scholar
  3. 3.
    J. Diamond, The p-adic log gamma function and p-adic Euler constants, Trans. Amer. Math. Soc., 233 (1977), 321–337.MathSciNetMATHGoogle Scholar
  4. 4.
    —, On the values of p-adic L-functions at positive integers, Acta Arith. 35 (1979), 223–237.MathSciNetMATHGoogle Scholar
  5. 5.
    —, The p-adic gamma measures, Proc. Amer. Math. Soc., 75(2) (1979), 211–217.MathSciNetMATHGoogle Scholar
  6. 6.
    —, Hypergeometric series with a p-adic variable, Pacific J. Math., 94(2)(1981), 265–276.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. Durix, Prolongement de la fonction exponentielle en dehors de son disque de convergence, Seminaire Delange-Pisot-Poitou (1966/67), Theorie des Nombres, Fasc.1, Exp.1, 12pp. (Secretariat Mathematique, Paris, 1968).Google Scholar
  8. 8.
    B. Dwork, On the zeta function of a hypersurface, II, Annals of Math., 80 (1964), 227–299.MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Ferrero and R. Greenberg, On the behavior of p-adic L-functions at s=0, Invent. Math. 50 (1978), 91–102.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J., 46(2) (1979), 455–468.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    —, p-adic Analysis: a Short Course on Recent Work, London Math. Soc. Lect. Note Series No. 46, Cambridge Univ. Press.Google Scholar
  12. 12.
    T. Kubota and H. Leopoldt, Eine p-adische Theorie der Zetawerte, I, J. Reine Angew. Math. 214/215 (1964), 328–339.MathSciNetMATHGoogle Scholar
  13. 13.
    Y. Morita, A p-adic analogue of the Γ-function, J. Fac. Sci. Tokyo 22 (1975), 255–266.MathSciNetMATHGoogle Scholar
  14. 14.
    G. Overholtzer, Sum functions in elementary p-adic analysis, Amer. J. Math 74 (1952), 332–346.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    L. Washington, A note on p-adic L-functions, J. Number Theory 8(2) (1976), 245–250.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Jack Diamond
    • 1
  1. 1.Queens College, CUNYFlushing

Personalised recommendations