Padé approximations to solutions of linear differential equations and applications to diophantine analysis

  • D. V. Chudnovsky
  • G. V. Chudnovsky
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1052)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Thue, J. Reine, Angew. Math. 135 (1909), 284–305.Google Scholar
  2. [2]
    C.L. Siegel, Math. Zeit. 10 (1921), 173–213.CrossRefGoogle Scholar
  3. [3]
    K.F. Roth., Mathematica 2 (1955), 1–20; corr. ibid., 168.Google Scholar
  4. [4]
    D. Ridout, Mathematica 4 (1957), 125–131.MathSciNetGoogle Scholar
  5. [5]
    K. Mahler, Lectures on Diophantine Approximations, Notre Dame, 1961.Google Scholar
  6. [6]
    A. Ya. Khintchine, Continued fraction (translated by P. Wynn), P. Noordhoff, Gromingen, The Netherland, 1963.Google Scholar
  7. [7]
    S. Lang, Bull. Soc. Math. France 93 (1965), 177–192.MathSciNetGoogle Scholar
  8. [8]
    S. Lang, Bull. Amer. Math. Soc. 77 (1971), 635–677.MathSciNetCrossRefGoogle Scholar
  9. [9]
    D.V. Chudnovsky, G.V. Chudnovsky, see preceeding paper, this Volume.Google Scholar
  10. [10]
    S. Lang, Diophantine geometry, Interscience, N.Y., 1962.Google Scholar
  11. [11]
    S. Uchiyama, J. Faculty Sci. Hokkaido Univ. 15 (1961), 173–192.MathSciNetGoogle Scholar
  12. [12]
    E.R. Kolchin, Proc. Amer. Math. Soc. 10 (1959), 238–244.MathSciNetCrossRefGoogle Scholar
  13. [13]
    C.F. Osgood, Proc. Konink, Nederl. Akad. Van. Vetens (Amsterdam), Series A, 78 (1975), 105–119.MathSciNetGoogle Scholar
  14. [14]
    C.F. Osgood, in Number Theory and Algebra, Academic Press, N.Y.-London, 1977, pp. 223–234.Google Scholar
  15. [15]
    C.F. Osgood, in Contribution to Algebra, Collection of papers dedicated to Ellis Kolchin, Academic Press, N.Y.-London, 1977, pp. 321–332.Google Scholar
  16. [16]
    W.M. Schmidt, Comm. Pure Appl. Math. 29 (1976), 759–773.CrossRefGoogle Scholar
  17. [17]
    W.M. Schmidt, Bull.Aust. Math. Soc. Ser. A, 25 (1978), 385–422.CrossRefGoogle Scholar
  18. [18]
    W.M. Schmidt, Montsh. Math. 87 (1979), 145–165.CrossRefGoogle Scholar
  19. [19]
    W.M. Schmidt, Diophantine approximations, Lectures Notes in Mathematics, v. 785, Springer Verlag, Berlin/N.Y., 1980.Google Scholar
  20. [20]
    C.F. Osgood, Notices of the Amer. Math. Soc. 1983, no. 4.Google Scholar
  21. [21]
    G.A. Baker, Jr., P. Graves-Morris, Padé approximants, Encycl. Math. v. 13, 14, ed. by G.-C. Rota, Addison Wesley, 1981.Google Scholar
  22. [22]
    A. Edrei, J. Approximation Theory 15 (1975), 278–293.MathSciNetCrossRefGoogle Scholar
  23. [23]
    G.H. Halphen, Traité des fonctions elleptiques, Gauthier-Villars, Paris, 1888, v. II.Google Scholar
  24. [24]
    G. Frobenius, R. Stickelberger, J. Reine Angew, Math. 83 (1877), 179.MathSciNetGoogle Scholar
  25. [25]
    S. Dumas, "Sur le développement des fonctions elliptiques en fractions continues", Thesis, Zurich, 1908.Google Scholar
  26. [26]
    E.M. Nikishin, Math. Sb. 143(1978), 280–292.Google Scholar
  27. [27]
    N.H. Abel, J. Reine Angew. Math. 1 (1826), 185–221 = Oeuvres, v. I, 104–144.MathSciNetCrossRefGoogle Scholar
  28. [28]
    U. Toda, Theory of nonlinear lattices, Springer, N.Y. 1981.CrossRefMATHGoogle Scholar
  29. [29]
    E.L. Ince, Ordinary differential equations, Chelsea, N.Y., 1956.MATHGoogle Scholar
  30. [30]
    J. Nuttall, J. Approximation Theory 32 (1981), 233–240.MathSciNetCrossRefGoogle Scholar
  31. [31]
    R.T. Baumel, J.L. Gammel, J. Nuttall, IMA Journal of Appl. Math. 27 (1981), 335–357.MathSciNetCrossRefGoogle Scholar
  32. [32]
    E.R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, v. 54, Academic Press, N.Y./London, 1973.MATHGoogle Scholar
  33. [33]
    M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969.Google Scholar
  34. [34]
    G.V. Chudnovsky, Les Houches lectures, Lecture Notes Physics, v. 126, Springer, 1980, pp. 136–169.Google Scholar
  35. [35]
    R. Liouville, C.R. Acad. Sci. Paris, 89 (1879), 1108–1110.Google Scholar
  36. [36]
    A. Korkine, C.R. Acad. Sci. Paris, 90 (1880), 303–304.Google Scholar
  37. [37]
    V. Velmin, Math. Sb. 24 (1903–1904), 633–661.Google Scholar
  38. [38]
    L. Szpiro, Astérisque 86 (1981), 44–78.Google Scholar
  39. [39]
    Ju. I. Manin, Amer. Math. Soc. Translations (2) 50 (1966), 189–234.MathSciNetCrossRefGoogle Scholar
  40. [40]
    P. Painlevé, Oeuvres, 3v., CNRS, Paris, 1972.Google Scholar
  41. [41]
    D.V. Chudnovsky, Cargése lectures, in Bifurcation phenomena in mathematical physics and related topics, D. Reidel, Boston, 1980, 385–447.Google Scholar
  42. [42]
    H. Davenport, Norske Vid. Selsk, Forh. 38 (1965), 86–87.MathSciNetGoogle Scholar
  43. [43]
    M. Hall, in Computers in Number Theory, Academic Press, N.Y., 1971, 173–198.Google Scholar
  44. [44]
    C. L. Siegel, Abh. Preuss. Akad. Niss. no 1 (1929).Google Scholar
  45. [45]
    S. Lang, Mathematika 9 (1962), 157–161.MathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Galoćkin, Math. Sb. 95 (1974), 396–417.Google Scholar
  47. [47]
    K. Weierstrass, S.-B.K. Preuss. Akad. Wiss. Berlin (1885), 1067–1085.Google Scholar
  48. [48]
    K. Mahler, J. Reine Angew. Math. 166 (1932), 118–136.MathSciNetGoogle Scholar
  49. [49]
    G.V. Chudnovsky, Ann. Math. 109 (1979), 353–376.MathSciNetCrossRefGoogle Scholar
  50. [50]
    G.V. Chudnovsky, Ann. Math. 117 (1983), 325–382.MathSciNetCrossRefGoogle Scholar
  51. [51]
    G.V. Chudnovsky, Proc. Natl. Acad. Sci. USA 80 (1983), 3138–3141.MathSciNetCrossRefGoogle Scholar
  52. [52]
    A. Baker, Transcendental number theory, 2nd edition, Cambridge Univ. Press, 1979.Google Scholar
  53. [53]
    B.J. Birch, in Computers in Algebra and Number Theory, Proc. Symp. Appl. Math., v. 4, AMS, Providence, Rhode Island, 1971, 63–68.Google Scholar
  54. [54]
    B. Riemann, Oeuvres Mathematiques, Blanchard, Paris, 1968, 353–363.Google Scholar
  55. [55]
    G.V. Chudnovsky, Cargése lectures, in Bifurcation phenomena in mathematical physics and related topics, D. Reidel, Boston, 1980, 448–510.Google Scholar
  56. [56]
    G. Pólya, G. Szegö, Aufgaben and lehrsätze aus der analysis, Springer, N.Y., 1964, v. II.CrossRefMATHGoogle Scholar
  57. [57]
    A. Baker, Proc. Camb. Phil. Soc. 63 (1967), 693–702.CrossRefGoogle Scholar
  58. [58]
    N. Ratliff, J. Number Theory 10 (1978), 99–126.MathSciNetCrossRefGoogle Scholar
  59. [59]
    K. Vaananen, Acta Arith. 36 (1980), 273–295.MathSciNetGoogle Scholar
  60. [60]
    W.W. Adams, Proc. Natl. Acad. Sci. USA 55 (1966), 28–31.CrossRefGoogle Scholar
  61. [61]
    W.M. Schmidt, Equations over finite fields, Lecture Notes Math., v. 536, Springer, N.Y. 1976.MATHGoogle Scholar
  62. [62]
    F. Sakai, Invent. Math. 26 (1974), 212–229.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • D. V. Chudnovsky
    • 1
  • G. V. Chudnovsky
    • 1
  1. 1.Department of MathematicsColumbia UniversityN. Y.

Personalised recommendations