Left cells in weyl groups

  • G. Lusztig
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1024)


Irreducible Representation Weyl Group Coxeter Group Principal Series Schubert Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BV].
    D. Barbasch, D. Vogan: Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153–199.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [KL1].
    [KL1]. D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [KL2].
    [KL2]. __: Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. vol. 36 (1980), 185–203, Amer. Math. Soc.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [L1].
    [L1]. G. Lusztig: A class of irreducible representations of a Weyl group, II, Proc. Kon. Nederl. Akad. Series A. vol. 85(2), 1982, 219–226.MathSciNetzbMATHGoogle Scholar
  5. [L2].
    [L2]. __: Characters of reductive groups over a finite field, to appear.Google Scholar
  6. [LV].
    G. Lusztig, D. Vogan: Singularities of closures of K-orbits on flag manifolds, Invent. Math. 71 (1983), 365–379.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [S].
    T. A. Springer: Applications of intersection cohomology, Séminaire Bourbaki, Fév. 1982, Paris.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Lusztig
    • 1
  1. 1.Department of MathematicsM.I.T.Cambridge

Personalised recommendations