Left cells in weyl groups

  • G. Lusztig
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1024)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BV].
    D. Barbasch, D. Vogan: Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153–199.MathSciNetCrossRefMATHGoogle Scholar
  2. [KL1].
    [KL1]. D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.MathSciNetCrossRefMATHGoogle Scholar
  3. [KL2].
    [KL2]. __: Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. vol. 36 (1980), 185–203, Amer. Math. Soc.MathSciNetCrossRefMATHGoogle Scholar
  4. [L1].
    [L1]. G. Lusztig: A class of irreducible representations of a Weyl group, II, Proc. Kon. Nederl. Akad. Series A. vol. 85(2), 1982, 219–226.MathSciNetMATHGoogle Scholar
  5. [L2].
    [L2]. __: Characters of reductive groups over a finite field, to appear.Google Scholar
  6. [LV].
    G. Lusztig, D. Vogan: Singularities of closures of K-orbits on flag manifolds, Invent. Math. 71 (1983), 365–379.MathSciNetCrossRefMATHGoogle Scholar
  7. [S].
    T. A. Springer: Applications of intersection cohomology, Séminaire Bourbaki, Fév. 1982, Paris.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Lusztig
    • 1
  1. 1.Department of MathematicsM.I.T.Cambridge

Personalised recommendations