Left cells in weyl groups

  • G. Lusztig
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1024)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BV].
    D. Barbasch, D. Vogan: Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982), 153–199.MathSciNetCrossRefMATHGoogle Scholar
  2. [KL1].
    [KL1]. D. Kazhdan, G. Lusztig: Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184.MathSciNetCrossRefMATHGoogle Scholar
  3. [KL2].
    [KL2]. __: Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. vol. 36 (1980), 185–203, Amer. Math. Soc.MathSciNetCrossRefMATHGoogle Scholar
  4. [L1].
    [L1]. G. Lusztig: A class of irreducible representations of a Weyl group, II, Proc. Kon. Nederl. Akad. Series A. vol. 85(2), 1982, 219–226.MathSciNetMATHGoogle Scholar
  5. [L2].
    [L2]. __: Characters of reductive groups over a finite field, to appear.Google Scholar
  6. [LV].
    G. Lusztig, D. Vogan: Singularities of closures of K-orbits on flag manifolds, Invent. Math. 71 (1983), 365–379.MathSciNetCrossRefMATHGoogle Scholar
  7. [S].
    T. A. Springer: Applications of intersection cohomology, Séminaire Bourbaki, Fév. 1982, Paris.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Lusztig
    • 1
  1. 1.Department of MathematicsM.I.T.Cambridge

Personalised recommendations