Advertisement

Une solution simple au probleme de Skorokhod

  • Jacques Azema
  • Marc Yor
Martingales, Integrales Stochastiques
Part of the Lecture Notes in Mathematics book series (LNM, volume 721)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. [1].
    CHACON, R., WALSH, J.B. One dimensional Potential Embedding. Sém. Probab. X, Lecture Notes in Math. 511, Springer (1976)Google Scholar
  2. [2].
    DUBINS, L. On a theorem of Skorokhod. Ann. Math. Statist. 39, 2091–2097 (1968)Google Scholar
  3. [3].
    KAROUI, N.EL., MAUREL, M. Un Problème de réflexion et ses applications au temps local et aux équations différentielles stochastiques sur ℝ. Cas Continu. Astérisque, 52–53, 117–144 (1978)Google Scholar
  4. [4].
    KENNEDY, D. Some martingales related to cumulative sum tests and single-server queues, in: Stochastic processes and their applications 4, 261–269 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5].
    KNIGHT, F. Random walks and a sojourn density process of Brownian motion. Trans. Amer. Math. Soc. 109, 56–86 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6].
    KNIGHT, F. On the sojourn times of killed Brownian motion. Sém. Probab. XII, Lecture Notes in Math. 649, Springer (1978)Google Scholar
  7. [7].
    LEHOCZKY, J. Formulas for stopped diffusion processes, with stopping times based on the maximum. Ann. Probability, 5, 601–608 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8].
    LEVY, P. Processus stochastiques et mouvement brownien. Gauthier-Villars. Seconde édition. (1965)Google Scholar
  9. [9].
    RAY, D. Sojourn times of diffusion processes. Illinois J. Math. 7, 615–630 (1963)MathSciNetzbMATHGoogle Scholar
  10. [10].
    ROOT, D.H. The existence of certain stopping times on Brownian motion. Ann. Math. Statist. vol. 40, no2, 715–718 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11].
    SKOROKHOD, A. Studies in the theory of random processes. Addison-Wesley, Reading (1965)zbMATHGoogle Scholar
  12. [12].
    TAYLOR, H.M. A stopped Brownian motion formula. Ann. Probability 3, 234–246 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13].
    WILLIAMS, D. On a stopped Brownian motion formula of H.M. Taylor. Sém. Probab. X, Lecture Notes in Math. 511, Springer (1976)Google Scholar
  14. [14].
    WILLIAMS, D. Markov properties of Brownian local times. Bull. Amer. Math. Soc. 75, 1035–1036 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15].
    YOEURP, Ch. Compléments sur les temps locaux et les quasi-martingales. Astérisque, 52–53, 197–218 (1978)Google Scholar
  16. [16].
    YOR, M. Sur la continuité des temps locaux associés à certaines semi-martingales. Astérisque, 52–53, 23–35 (1978)Google Scholar
  17. [17].
    YOR, M. Sur les théories du filtrage et de la prédiction. Sém. Probab. XI, Lecture Notes in Math. 581, Springer (1977)Google Scholar
  18. [18].
    AZEMA, J. Représentation multiplicative d'une surmartingale bornée. (A paraître au Z.W.)Google Scholar
  19. [19].
    AZEMA, J., YOR, M. En guise d'introduction (à un volume d'"Astérisque" sur les temps locaux). Astérisque, 52–53, 3–16 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jacques Azema
  • Marc Yor

There are no affiliations available

Personalised recommendations