Guide to multigrid development

  • Achi Brandt
Part I: Systematic Introductory Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 960)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1]
    R.E. Alcouffe, A. Brandt, J.E. Dendy, Jr., and J.W. Painter: The multi-grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2 (1981), 430–454.MathSciNetCrossRefMATHGoogle Scholar
  2. [A2]
    W. Auzinger and H.J. Stetter: Defect corrections and multigrid iterations. This Proceedings.Google Scholar
  3. [B1]
    N.S. Bakhvalov (Bahvalov): Convergence of a relaxation method with natural constraints on an elliptic operator. Ž. Vyčisl. Mat. i Mat. Fiz., 6 (1966), 861–885. (Russian)MathSciNetMATHGoogle Scholar
  4. [B2]
    R.E. Bank: Multi-level Iterative Method for Nonlinear Elliptic Equations. Elliptic Problem Solvers (M. Schultz, ed.), Academic Press, New York 1981, 1–16.CrossRefGoogle Scholar
  5. [B3]
    C. Börgers: Mehrgitterverfahren für eine Mehrstellendiskretisierung der Poisson-Gleichung und für eine zweidimensionale singulär gestörte Aufgabe. Diplomarbeit, Universität Bonn, Bonn, 1981.Google Scholar
  6. [B4]
    D. Braess: The convergence rate of a multigrid method with Gauss-Seidel relaxation for the Poisson equation. This Proceedings.Google Scholar
  7. [B5]
    A. Brandt: Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems. Proc. 3rd Internat. Conf. on Numerical Methods in Fluid Mechanics (Paris, 1972), Lecture Notes in Physics, 18, Springer-Verlag, Berlin and New York, 1973, 82–89.MATHGoogle Scholar
  8. [B6]
    A. Brandt: Multi-level adaptive techniques. IBM Research Report RC6026, 1976.Google Scholar
  9. [B7]
    A. Brandt: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31 (1977), 333–390. ICASE Report 76-27.MathSciNetCrossRefMATHGoogle Scholar
  10. [B8]
    A. Brandt: Multi-level adaptive techniques (MLAT) for partial differential equations: Ideas and software. Mathematical Software III (John R. Rice, ed.), Academic Press, New York 1977, 273–314. ICASE Report 77-20.Google Scholar
  11. [B9]
    A. Brandt et al.: Lecture notes of the ICASE Workshop on Multigrid Methods. ICASE, NASA Langley Research Center, Hampton, VA., 1978.Google Scholar
  12. [B10]
    A. Brandt: Multi-level adaptive solutions to singular-perturbation problems. Numerical Analysis of Singular Perturbation Problems (P.W. Hemker and J.J.H. Miller, eds.), Academic Press 1979, 53–142. ICASE Report 78-18.Google Scholar
  13. [B11]
    A. Brandt: Multi-level adaptive finite-elements methods: I. Variational problems. Special Topics of Applied Mathematics (J. Frehse, D. Pallaschke, U. Trottenberg, eds.), North Holland 1980, 91–128. ICASE Report 79-8.Google Scholar
  14. [B12]
    A. Brandt: Numerical stability and fast solutions of boundary-value problems. Boundary and Interior Layers — Computational and Asymptotic Methods (J.J.H. Miller, ed.), Boole Press, Dublin 1980, 29–49.Google Scholar
  15. [B13]
    A. Brandt: Multi-level adaptive computations in fluid dynamics. AIAA J. 18 (1980), 1165–1172.MathSciNetCrossRefMATHGoogle Scholar
  16. [B14]
    A. Brandt: Multigrid Solvers on Parallel Computers. Elliptic Problem Solvers (M. Schultz, ed.), Academic Press, New York 1981, 39–84.CrossRefGoogle Scholar
  17. [B15]
    A. Brandt: Stages in developing multigrid solutions. Numerical Methods for Engineering (E. Absi, R. Glowinski, P. Lascaux, H. Veysseyre, eds.), Dunod, Paris 1980, 23–44.Google Scholar
  18. [B16]
    A. Brandt: Multigrid solutions to steady-state compressible Navier-Stokes equations. Proc. Fifth International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, France, December 14–18, 1981.Google Scholar
  19. [B17]
    A. Brandt: Multigrid solvers for non-elliptic and singular-perturbation steady-state problems. Weizmann Institute of Science, Rehovot, Israel, 1981. Computers and Fluids, to appear.Google Scholar
  20. [B18]
    A. Brandt and C.W. Cryer: Multigrid algorithms for the solution of linear complementary problems arising from free boundary problems. MRC Technical Summary Report #2131, University of Wisconsin, Madison, Oct. 1980. SIAM J. Sci. Stat. Comp., to appear.Google Scholar
  21. [B19]
    A. Brandt and N. Dinar: Multigrid solutions to elliptic flow problems. Numerical Methods for Partial Differential Equations (S. Parter, ed.), Academic Press 1979, 53–147. ICASE Report 79-15.Google Scholar
  22. [B20]
    A. Brandt, S. McCormick and J. Ruge: Multigrid algorithms for differential eigenproblems. Submitted to SIAM J. Sci. Stat. Comp., September 1981.Google Scholar
  23. [B21]
    A. Brandt and S. Ta’asan: Multigrid methods for highly oscillatory problems. Research Report, September 1981.Google Scholar
  24. [B22]
    A. Brandt, J.E. Dendy, Jr. and H. Ruppel: The multi-grid method for the pressure iteration in Eulerian and Lagrangian hydrodynamics. J. Comp. Phys. 34 (1980), 348–370.MathSciNetCrossRefMATHGoogle Scholar
  25. [B23]
    J.J. Brown: A multigrid mesh-embedding technique for three-dimensional transonic potential flow analysis. Boeing Commercial Airplane Company, Seattle, Washington, April 1981.Google Scholar
  26. [C1]
    M. Ciment, S.H. Leventhal and B.C. Weinberg: The operator compact implicit method for parabolic equations. J. Comp. Phys. 28 (1978), 135–166.MathSciNetCrossRefMATHGoogle Scholar
  27. [D1]
    J.E. Dendy, Jr.: Black box multigrid. LA-UR-81-2337 Los Alamos National Laboratory, Los Alamos, New Mexico. J. Comp. Phys., to appear.Google Scholar
  28. [D2]
    N. Dinar: Fast methods for the numerical solution of boundary-value problems. Ph.D. Thesis, The Weizmann Institute of Science, Rehovot, Israel (1979).Google Scholar
  29. [D3]
    I.S. Duff: Sparse matrix software for elliptic PDE’s. This Proceedings.Google Scholar
  30. [F1]
    R.P. Fedorenko: On the speed of convergence of an iteration process. Ž. Vyčisl. Mat. i Mat. Fiz. 4 (1964), 559–564. (Russian)MathSciNetGoogle Scholar
  31. [F2]
    Ha. Foerster, K. Stueben and U. Trottenberg: Non-standard multigrid techniques using checkered relaxation and intermediate grids. Elliptic Problem Solvers (M. Schultz, ed.), Academic Press, New York, 1981, 285–300.CrossRefGoogle Scholar
  32. [F3]
    Ha. Foerster and K. Witsch: On efficient multigrid software for elliptic problems on rectangular domains. Preprint No. 458, SFB 72, Universität Bonn, Bonn, 1981.MATHGoogle Scholar
  33. [F4]
    G.E. Forsythe and W.R. Wasow: Finite-Difference Methods for Partial Differential Equations. Wiley, New York 1960.MATHGoogle Scholar
  34. [F5]
    P.O. Frederickson: Fast approximate inversion of large sparse linear systems. Math. Report 7-75, Lakehead University, Ontario, Canada, 1975.Google Scholar
  35. [H1]
    W. Hackbusch: The fast numerical solution of very large elliptic differential schemes. J. Inst. Maths. Applics. 26 (1980), 119–132.MathSciNetCrossRefMATHGoogle Scholar
  36. [H2]
    W. Hackbusch: Multi-grid convergence theory. This Proceedings.Google Scholar
  37. [H3]
    J.M. Hyman: Mesh refinement and local inversion of elliptic partial differential equations. J. Comp. Phys. 23 (1977), 124–134.MathSciNetCrossRefMATHGoogle Scholar
  38. [K1]
    H.B. Keller: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory (P. Rabinowitz, ed.), Academic Press, New York, 1977, 359–384.Google Scholar
  39. [K2]
    R. Kettler: Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. This Proceedings.Google Scholar
  40. [L1]
    B. Lindberg: Error estimation and iterative improvement for the numerical solution of operator equations. Report UIUCDCS-R-76-820, University of Illinois, Urbana, Illinois, 1976.Google Scholar
  41. [L2]
    J. Linden: Mehrgitterverfahren für die Poisson-Gleichung in Kreis und Ringgebiet unter Verwendung lokaler Koordinaten. Diplomarbeit, Bonn 1981.Google Scholar
  42. [L3]
    R.E. Lynch and J.R. Rice: The Hodie method and its performance. Recent Advances in Numerical Analysis (C. de Boor, ed.), Academic Press, New York, 1978, 143–179.CrossRefGoogle Scholar
  43. [M1]
    J. Meinguet: Multivariate interpolation at arbitrary points made simple. J. Applied Math. Phys. (ZAMP) 30 (1979), 292–304.MathSciNetCrossRefMATHGoogle Scholar
  44. [M2]
    P. Meissle: Apriori prediction of roundoff error accumulation in the solution of a super-large geodetic normal equation system. NOAA Professional Paper 12, National Oceanic and Atmospheric Administration, Rockville, Maryland, 1980.Google Scholar
  45. [M3]
    MUGTAPE 82, A tape of multigrid software and programs, including GRIDPACK; MUGPACK; simple model programs (CYCLE C, FASCC, FMG1 and an eigenproblem solver); Stokes equations solver; SMORATE; BOXMG [D1]; MGOO and MGO1 [S4]. Available at the Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, and at the GMD-IMA, Postfach 1240, Schloss Birlinghoven, D-5205, West Germany.Google Scholar
  46. [M4]
    D.R. McCarthy, and T.A. Reyhner: A multi-grid code for three-dimensional transonic potential flow about axisymmetric inlets at angle of attack. AIAA Paper 80-1365, Proceedings of AIAA 13th Fluid and Plasma Dynamics Conference, Snowmass, Colo., July 1980.Google Scholar
  47. [N1]
    K.A. Narayanan, D.P. O’Leary and A. Rosenfeld: Multi-resolution relaxation. TR-1070 MCS-79-23422, University of Maryland, College Park, Maryland, July 1981.Google Scholar
  48. [N2]
    R.A. Nicolaides: On multiple grid and related techniques for solving discrete elliptic systems. J. Comp. Phys. 19 (1975), 418–431.MathSciNetCrossRefMATHGoogle Scholar
  49. [N3]
    R.A. Nicolaides: On the l2 convergence of an algorithm for solving finite element equations. Math. Comp. 31 (1977), 892–906.MathSciNetMATHGoogle Scholar
  50. [O1]
    D. Ophir: Language for processes of numerical solutions to differential equations. Ph.D. Thesis (1979), The Weizmann Institute of Science, Rehovot, Israel.Google Scholar
  51. [R1]
    M. Ries, U. Trottenberg and G. Winter: A note on MGR methods. Preprint 461, Universität Bonn, SFB 72, 1981. Lin. Alg. and Appl., to appear.Google Scholar
  52. [S1]
    S. Schaeffer: High-order multigrid methods. Ph.D. Thesis, Colorado State Univ., Fort Collins, Colorado, 1982.Google Scholar
  53. [S2]
    J.C. South and A. Brandt: Application of multi-level grid method to transonic flow calculations. ICASE Report No. 76-8, NASA Langley Research Center, Hampton, Virginia, 1976.Google Scholar
  54. [S3]
    H.J. Stetter: The defect correction principle and discretization methods. Num. Math. 29 (1978), 425–443.MathSciNetCrossRefMATHGoogle Scholar
  55. [S4]
    K. Stueben and U. Trottenberg: Multigrid methods: fundamental algorithms, model problem analysis and applications. This Proceedings.Google Scholar
  56. [T1]
    S.L. Tanimoto: Template matching in pyramids. Computer Graphics and Image Processing 16 (1981), 356–369.CrossRefGoogle Scholar
  57. [T2]
    C.A. Thole: Beiträge zur Fourieranalyse von Mehrgittermethoden: V-Cycle, ILU-Glättung, anisotrope Operatoren. Diplomarbeit, Universität Bonn. Bonn, to appearGoogle Scholar
  58. [V1]
    R. Verfürth: The contraction number of a multigrid method with ratio 2 for solving Poisson’s equation. Ruhr-Universität Bochum, West Germany, 1981MATHGoogle Scholar
  59. [W1]
    P. Wesseling: A robust and efficient multigrid method. This Proceedings.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Achi Brandt
    • 1
  1. 1.Department of Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations