Guide to multigrid development

  • Achi Brandt
Part I: Systematic Introductory Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 960)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A1]
    R.E. Alcouffe, A. Brandt, J.E. Dendy, Jr., and J.W. Painter: The multi-grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput. 2 (1981), 430–454.MathSciNetCrossRefMATHGoogle Scholar
  2. [A2]
    W. Auzinger and H.J. Stetter: Defect corrections and multigrid iterations. This Proceedings.Google Scholar
  3. [B1]
    N.S. Bakhvalov (Bahvalov): Convergence of a relaxation method with natural constraints on an elliptic operator. Ž. Vyčisl. Mat. i Mat. Fiz., 6 (1966), 861–885. (Russian)MathSciNetMATHGoogle Scholar
  4. [B2]
    R.E. Bank: Multi-level Iterative Method for Nonlinear Elliptic Equations. Elliptic Problem Solvers (M. Schultz, ed.), Academic Press, New York 1981, 1–16.CrossRefGoogle Scholar
  5. [B3]
    C. Börgers: Mehrgitterverfahren für eine Mehrstellendiskretisierung der Poisson-Gleichung und für eine zweidimensionale singulär gestörte Aufgabe. Diplomarbeit, Universität Bonn, Bonn, 1981.Google Scholar
  6. [B4]
    D. Braess: The convergence rate of a multigrid method with Gauss-Seidel relaxation for the Poisson equation. This Proceedings.Google Scholar
  7. [B5]
    A. Brandt: Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems. Proc. 3rd Internat. Conf. on Numerical Methods in Fluid Mechanics (Paris, 1972), Lecture Notes in Physics, 18, Springer-Verlag, Berlin and New York, 1973, 82–89.MATHGoogle Scholar
  8. [B6]
    A. Brandt: Multi-level adaptive techniques. IBM Research Report RC6026, 1976.Google Scholar
  9. [B7]
    A. Brandt: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31 (1977), 333–390. ICASE Report 76-27.MathSciNetCrossRefMATHGoogle Scholar
  10. [B8]
    A. Brandt: Multi-level adaptive techniques (MLAT) for partial differential equations: Ideas and software. Mathematical Software III (John R. Rice, ed.), Academic Press, New York 1977, 273–314. ICASE Report 77-20.Google Scholar
  11. [B9]
    A. Brandt et al.: Lecture notes of the ICASE Workshop on Multigrid Methods. ICASE, NASA Langley Research Center, Hampton, VA., 1978.Google Scholar
  12. [B10]
    A. Brandt: Multi-level adaptive solutions to singular-perturbation problems. Numerical Analysis of Singular Perturbation Problems (P.W. Hemker and J.J.H. Miller, eds.), Academic Press 1979, 53–142. ICASE Report 78-18.Google Scholar
  13. [B11]
    A. Brandt: Multi-level adaptive finite-elements methods: I. Variational problems. Special Topics of Applied Mathematics (J. Frehse, D. Pallaschke, U. Trottenberg, eds.), North Holland 1980, 91–128. ICASE Report 79-8.Google Scholar
  14. [B12]
    A. Brandt: Numerical stability and fast solutions of boundary-value problems. Boundary and Interior Layers — Computational and Asymptotic Methods (J.J.H. Miller, ed.), Boole Press, Dublin 1980, 29–49.Google Scholar
  15. [B13]
    A. Brandt: Multi-level adaptive computations in fluid dynamics. AIAA J. 18 (1980), 1165–1172.MathSciNetCrossRefMATHGoogle Scholar
  16. [B14]
    A. Brandt: Multigrid Solvers on Parallel Computers. Elliptic Problem Solvers (M. Schultz, ed.), Academic Press, New York 1981, 39–84.CrossRefGoogle Scholar
  17. [B15]
    A. Brandt: Stages in developing multigrid solutions. Numerical Methods for Engineering (E. Absi, R. Glowinski, P. Lascaux, H. Veysseyre, eds.), Dunod, Paris 1980, 23–44.Google Scholar
  18. [B16]
    A. Brandt: Multigrid solutions to steady-state compressible Navier-Stokes equations. Proc. Fifth International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, France, December 14–18, 1981.Google Scholar
  19. [B17]
    A. Brandt: Multigrid solvers for non-elliptic and singular-perturbation steady-state problems. Weizmann Institute of Science, Rehovot, Israel, 1981. Computers and Fluids, to appear.Google Scholar
  20. [B18]
    A. Brandt and C.W. Cryer: Multigrid algorithms for the solution of linear complementary problems arising from free boundary problems. MRC Technical Summary Report #2131, University of Wisconsin, Madison, Oct. 1980. SIAM J. Sci. Stat. Comp., to appear.Google Scholar
  21. [B19]
    A. Brandt and N. Dinar: Multigrid solutions to elliptic flow problems. Numerical Methods for Partial Differential Equations (S. Parter, ed.), Academic Press 1979, 53–147. ICASE Report 79-15.Google Scholar
  22. [B20]
    A. Brandt, S. McCormick and J. Ruge: Multigrid algorithms for differential eigenproblems. Submitted to SIAM J. Sci. Stat. Comp., September 1981.Google Scholar
  23. [B21]
    A. Brandt and S. Ta’asan: Multigrid methods for highly oscillatory problems. Research Report, September 1981.Google Scholar
  24. [B22]
    A. Brandt, J.E. Dendy, Jr. and H. Ruppel: The multi-grid method for the pressure iteration in Eulerian and Lagrangian hydrodynamics. J. Comp. Phys. 34 (1980), 348–370.MathSciNetCrossRefMATHGoogle Scholar
  25. [B23]
    J.J. Brown: A multigrid mesh-embedding technique for three-dimensional transonic potential flow analysis. Boeing Commercial Airplane Company, Seattle, Washington, April 1981.Google Scholar
  26. [C1]
    M. Ciment, S.H. Leventhal and B.C. Weinberg: The operator compact implicit method for parabolic equations. J. Comp. Phys. 28 (1978), 135–166.MathSciNetCrossRefMATHGoogle Scholar
  27. [D1]
    J.E. Dendy, Jr.: Black box multigrid. LA-UR-81-2337 Los Alamos National Laboratory, Los Alamos, New Mexico. J. Comp. Phys., to appear.Google Scholar
  28. [D2]
    N. Dinar: Fast methods for the numerical solution of boundary-value problems. Ph.D. Thesis, The Weizmann Institute of Science, Rehovot, Israel (1979).Google Scholar
  29. [D3]
    I.S. Duff: Sparse matrix software for elliptic PDE’s. This Proceedings.Google Scholar
  30. [F1]
    R.P. Fedorenko: On the speed of convergence of an iteration process. Ž. Vyčisl. Mat. i Mat. Fiz. 4 (1964), 559–564. (Russian)MathSciNetGoogle Scholar
  31. [F2]
    Ha. Foerster, K. Stueben and U. Trottenberg: Non-standard multigrid techniques using checkered relaxation and intermediate grids. Elliptic Problem Solvers (M. Schultz, ed.), Academic Press, New York, 1981, 285–300.CrossRefGoogle Scholar
  32. [F3]
    Ha. Foerster and K. Witsch: On efficient multigrid software for elliptic problems on rectangular domains. Preprint No. 458, SFB 72, Universität Bonn, Bonn, 1981.MATHGoogle Scholar
  33. [F4]
    G.E. Forsythe and W.R. Wasow: Finite-Difference Methods for Partial Differential Equations. Wiley, New York 1960.MATHGoogle Scholar
  34. [F5]
    P.O. Frederickson: Fast approximate inversion of large sparse linear systems. Math. Report 7-75, Lakehead University, Ontario, Canada, 1975.Google Scholar
  35. [H1]
    W. Hackbusch: The fast numerical solution of very large elliptic differential schemes. J. Inst. Maths. Applics. 26 (1980), 119–132.MathSciNetCrossRefMATHGoogle Scholar
  36. [H2]
    W. Hackbusch: Multi-grid convergence theory. This Proceedings.Google Scholar
  37. [H3]
    J.M. Hyman: Mesh refinement and local inversion of elliptic partial differential equations. J. Comp. Phys. 23 (1977), 124–134.MathSciNetCrossRefMATHGoogle Scholar
  38. [K1]
    H.B. Keller: Numerical solution of bifurcation and nonlinear eigenvalue problems. Applications of Bifurcation Theory (P. Rabinowitz, ed.), Academic Press, New York, 1977, 359–384.Google Scholar
  39. [K2]
    R. Kettler: Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. This Proceedings.Google Scholar
  40. [L1]
    B. Lindberg: Error estimation and iterative improvement for the numerical solution of operator equations. Report UIUCDCS-R-76-820, University of Illinois, Urbana, Illinois, 1976.Google Scholar
  41. [L2]
    J. Linden: Mehrgitterverfahren für die Poisson-Gleichung in Kreis und Ringgebiet unter Verwendung lokaler Koordinaten. Diplomarbeit, Bonn 1981.Google Scholar
  42. [L3]
    R.E. Lynch and J.R. Rice: The Hodie method and its performance. Recent Advances in Numerical Analysis (C. de Boor, ed.), Academic Press, New York, 1978, 143–179.CrossRefGoogle Scholar
  43. [M1]
    J. Meinguet: Multivariate interpolation at arbitrary points made simple. J. Applied Math. Phys. (ZAMP) 30 (1979), 292–304.MathSciNetCrossRefMATHGoogle Scholar
  44. [M2]
    P. Meissle: Apriori prediction of roundoff error accumulation in the solution of a super-large geodetic normal equation system. NOAA Professional Paper 12, National Oceanic and Atmospheric Administration, Rockville, Maryland, 1980.Google Scholar
  45. [M3]
    MUGTAPE 82, A tape of multigrid software and programs, including GRIDPACK; MUGPACK; simple model programs (CYCLE C, FASCC, FMG1 and an eigenproblem solver); Stokes equations solver; SMORATE; BOXMG [D1]; MGOO and MGO1 [S4]. Available at the Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, and at the GMD-IMA, Postfach 1240, Schloss Birlinghoven, D-5205, West Germany.Google Scholar
  46. [M4]
    D.R. McCarthy, and T.A. Reyhner: A multi-grid code for three-dimensional transonic potential flow about axisymmetric inlets at angle of attack. AIAA Paper 80-1365, Proceedings of AIAA 13th Fluid and Plasma Dynamics Conference, Snowmass, Colo., July 1980.Google Scholar
  47. [N1]
    K.A. Narayanan, D.P. O’Leary and A. Rosenfeld: Multi-resolution relaxation. TR-1070 MCS-79-23422, University of Maryland, College Park, Maryland, July 1981.Google Scholar
  48. [N2]
    R.A. Nicolaides: On multiple grid and related techniques for solving discrete elliptic systems. J. Comp. Phys. 19 (1975), 418–431.MathSciNetCrossRefMATHGoogle Scholar
  49. [N3]
    R.A. Nicolaides: On the l2 convergence of an algorithm for solving finite element equations. Math. Comp. 31 (1977), 892–906.MathSciNetMATHGoogle Scholar
  50. [O1]
    D. Ophir: Language for processes of numerical solutions to differential equations. Ph.D. Thesis (1979), The Weizmann Institute of Science, Rehovot, Israel.Google Scholar
  51. [R1]
    M. Ries, U. Trottenberg and G. Winter: A note on MGR methods. Preprint 461, Universität Bonn, SFB 72, 1981. Lin. Alg. and Appl., to appear.Google Scholar
  52. [S1]
    S. Schaeffer: High-order multigrid methods. Ph.D. Thesis, Colorado State Univ., Fort Collins, Colorado, 1982.Google Scholar
  53. [S2]
    J.C. South and A. Brandt: Application of multi-level grid method to transonic flow calculations. ICASE Report No. 76-8, NASA Langley Research Center, Hampton, Virginia, 1976.Google Scholar
  54. [S3]
    H.J. Stetter: The defect correction principle and discretization methods. Num. Math. 29 (1978), 425–443.MathSciNetCrossRefMATHGoogle Scholar
  55. [S4]
    K. Stueben and U. Trottenberg: Multigrid methods: fundamental algorithms, model problem analysis and applications. This Proceedings.Google Scholar
  56. [T1]
    S.L. Tanimoto: Template matching in pyramids. Computer Graphics and Image Processing 16 (1981), 356–369.CrossRefGoogle Scholar
  57. [T2]
    C.A. Thole: Beiträge zur Fourieranalyse von Mehrgittermethoden: V-Cycle, ILU-Glättung, anisotrope Operatoren. Diplomarbeit, Universität Bonn. Bonn, to appearGoogle Scholar
  58. [V1]
    R. Verfürth: The contraction number of a multigrid method with ratio 2 for solving Poisson’s equation. Ruhr-Universität Bochum, West Germany, 1981MATHGoogle Scholar
  59. [W1]
    P. Wesseling: A robust and efficient multigrid method. This Proceedings.Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Achi Brandt
    • 1
  1. 1.Department of Applied MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations