Complete uniform spaces

  • Michael D. Rice
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 378)


Invariant Measure Uniform Space Uniform Cover Fine Space Uniform Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Atsuji, M., "Uniform continuity of continuous functions on metric spaces", Pacific J. Math. 8, 11–16 (1958).MathSciNetCrossRefMATHGoogle Scholar
  2. [A1]
    Alexandrov, A.D., "On groups with an invariant measure", Dokl. Akad. Nauk SSSR, N.S., 34, 5–9 (1942).MathSciNetGoogle Scholar
  3. [CR]
    Comfort, W. W. and K. A. Ross, "Pseudocompactness and uniform continuity in topological groups", Pacific J. Math. 16, 483–496 (1966).MathSciNetCrossRefMATHGoogle Scholar
  4. [Fe]
    Feldman, J., Nonexistence of Quasi-Invariant Measures on Infinite Dimensional Linear Spaces, (manuscript).Google Scholar
  5. [F1]
    Frolík, Z., "A note on metric-fine spaces", to appear in Proc. AMS.Google Scholar
  6. [F2]
    Frolík, Z., "Locally e-fine measurable spaces", to appear in Trans. AMS.Google Scholar
  7. [GI]
    Ginsburg, S. and J. R. Isbell, "Some operators on uniform spaces", Trans. AMS, 93, 145–168 (1959).MathSciNetCrossRefMATHGoogle Scholar
  8. [GJ]
    Gillman, L. and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, 1960.CrossRefMATHGoogle Scholar
  9. [H1]
    Hager, A. W., "Some nearly fine spaces", to appear Proc. London Math. Soc. Google Scholar
  10. [H2]
    Hager, A. W., "Three classes of uniform spaces", Proc. Third Prague Symposium, 1971. Academic, Prague, 1972.MATHGoogle Scholar
  11. [HR]
    Hager, A. W., and M. D. Rice, "The commuting of coreflectors in uniform spaces with completion", (unpublished).Google Scholar
  12. [I1]
    Isbell, J.R., Uniform Spaces, Providence, 1964.Google Scholar
  13. [I2]
    Isbell, J.R., and H. H. Corson, "Some properties of strong uniformities", Quart. J. Math. Oxford (2), 11, 17–33 (1960).MathSciNetMATHGoogle Scholar
  14. [I3]
    Isbell, J.R., Lectures on Uniform Spaces, Purdue University, 1960.Google Scholar
  15. [I4]
    Isbell, J.R., "Uniform neighborhood retracts", Pacific J. Math. 11, 609–648 (1961).MathSciNetCrossRefMATHGoogle Scholar
  16. [K]
    Kennison, J.F., "Reflective functors in general topology and elsewhere", Trans. AMS 118, 303–315 (1965).MathSciNetCrossRefMATHGoogle Scholar
  17. [L]
    Loomis, L.H., "Haar measure in uniform structures", Duke Math. J. 16, 193–208 (1949).MathSciNetCrossRefMATHGoogle Scholar
  18. [N]
    Njastad, O., "On real valued proximity mappings", Math. Ann. 154, 413–419 (1964).MathSciNetCrossRefGoogle Scholar
  19. [R1]
    Rice, M.D., "Subcategories of uniform spaces", to appear Trans. AMS.Google Scholar
  20. [R2]
    Rice, M.D., "Metric-fine uniform spaces", (unpublished).Google Scholar
  21. [Ro]
    Rosenthal, H.P., "On complemented and quasi-complemented subspaces of quotients of C(S) for Stonian S", Proc. Nat. Acad. Sciences, USA, 60, 1165–1169 (1968).MathSciNetCrossRefMATHGoogle Scholar
  22. [RR]
    Rice, M.D., and G.D. Reynolds, "Covering properties of uniform spaces", to appear Quart. J. Math. Oxford.Google Scholar
  23. [Si]
    Simpson, J., "Complete uniformities", Rev. Roum. Pures et Appl., 17, 8, 1241–1244 (1972).MathSciNetMATHGoogle Scholar
  24. [SK]
    Segal, I. and R. Kunze, Integrals and Operators, McGraw-Hill, New York, 1968.MATHGoogle Scholar
  25. [Sm]
    Smith, J.C., "Refinements of Lebesgue covers", Fund. Math. 20 (1971).Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Michael D. Rice
    • 1
  1. 1.Department of MathematicsOhio UniversityAthens

Personalised recommendations