Ultradistributions and hyperfunctions

  • Hikosaburo Komatsu
Conference At Rims
Part of the Lecture Notes in Mathematics book series (LNM, volume 287)


Entire Function Compact Convex Dense Subspace Linear Partial Differential Operator Gevrey Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Björck, Linear partial differential operators and generalized distributions, Ark. f. Math., 6 (1966), 351–407.MathSciNetCrossRefGoogle Scholar
  2. [2]
    R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954.zbMATHGoogle Scholar
  3. [3]
    L. Ehrenpreis, Theory of infinite derivatives, Amer. J. Math., 81 (1959), 799–845.MathSciNetCrossRefGoogle Scholar
  4. [4]
    L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York·London·Sydney·Toront, 1970.zbMATHGoogle Scholar
  5. [5]
    H. Komatsu, Projective and injective limits of weakly compact sequences of convex spaces, J. Math. Soc. Japan, 19 (1967), 366–383.MathSciNetCrossRefGoogle Scholar
  6. [6]
    H. Komatsu, Hyperfunctions and Partial Differential Equations with Constant Coefficients, Seminar Notes No. 22, Dept. Math. Univ. Tokyo, 1968 (in Japanese).Google Scholar
  7. [7]
    J.-L. Lions-E. Magenes, Problèmes aux Limites Non Homogènes et Applications, Vol. 3, Dunod, Paris, 1970.zbMATHGoogle Scholar
  8. [8]
    S. Mandelbrojt, Série Adhérentes. Régularisation des Suites. Applications, Gauthier-Villars, Paris, 1952.zbMATHGoogle Scholar
  9. [9]
    S. Mandelbrojt, Fonctions Entières et Transformées de Fourier, Applications, Math. Soc. Japan, Tokyo, 1967.zbMATHGoogle Scholar
  10. [10]
    C. Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. Ecole Norm. Sup. 3 ser., 77 (1960), 41–121.MathSciNetzbMATHGoogle Scholar
  11. [11]
    C. Roumieu, Ultra-distributions définies sur Rn et sur certaines classes de variétés différentiables, J. Analyse Math., 10 (1962/63), 153–192.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Hikosaburo Komatsu
    • 1
  1. 1.Department of MathematicsUniversity of TokyoTokyoJapan

Personalised recommendations