Edge of the wedge theorem and hyperfunction

  • Mitsuo Morimoto
Conference At Katata
Part of the Lecture Notes in Mathematics book series (LNM, volume 287)


Holomorphic Function Distribution Boundary Complex Neighbourhood Singular Support Real Analytic Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Araki, H.: A generalization of Borchers’ theorem, Helv. Acta Phys., 36 (1963), 132–139.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Bogoliubov, N. N. and D. V. Shirkov: Introduction to the Theory of Quantized Fields, GITTL, Moscow, 1957; English transl. Interscience, New York, 1959.Google Scholar
  3. [3]
    Bremermann, H. J., R. Oehme and J. G. Taylor: Proof of dispersion relations in quantized field theory, Phys. Rev. (2) 109 (1958), 2178–2190.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Browder, F. E.: On the "edge of the wedge" theorem, Canad. J. Math., 15 (1963), 125–131.MathSciNetCrossRefGoogle Scholar
  5. [5]
    Cameron, R. H. and D. A. Storvick: Analytic continuation for functions of several complex variables, Trans. Amer. Math. Soc., 125 (1966), 7–12.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Dyson, F. J.: Connection between local commutativity and regularity of Wightman functions, Phys. Rev. (2) 110 (1958), 579–581.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Epstein, H.: Generalization of the "edge of the wedge" theorem, J. Math. Phys., 1 (1960), 524–531.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Harvey, R.: Hyperfunctions and Partial Differential Equations, Thesis, Stanford Univ., 1966.Google Scholar
  9. [9]
    Hörmander, L.: An Introduction to Complex Analysis in Several Variables, Van Nostrand, 1966.Google Scholar
  10. [10]
    Jost, R.: The Generalized Theory of Quantized Fields, AMS, Providence, Rhode Island, 1965.zbMATHGoogle Scholar
  11. [11]
    Kajiwara, J.: Theory of Complex Functions, Math. Library 2, Morikita Shuppan, Tokyo, 1968 (in Japanese).Google Scholar
  12. [12]
    Kashiwara, M.: On the flabbiness of the sheaf C and the Radon transformation, Sûrikaiseki-kenkyûsho Kôkyûroku 114 (1971), 1–4 (in Japanese).Google Scholar
  13. [13]
    Kawai, T.: Construction of local elementary solutions for linear partial differential operators with real analytic coefficients, I, Publ. R.I.M.S., 7 (1971), 363–397.CrossRefGoogle Scholar
  14. [14]
    Komatsu, H.: Resolution by hyperfunctions of sheaves of solutions of differential equations with constant coefficients, Math. Ann., 176 (1968), 77–86.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Komatsu, H.: Hyperfunctions and Partial Differential Equations with Constant Coefficients, Univ. Tokyo Seminar Notes, No.22, 1968 (in Japanese).Google Scholar
  16. [16]
    Komatsu, H.: A local version of Bochner’s tube theorem, J. Fac. Sci. Univ. Tokyo, Sect. IA, 19 (1972), 201–214.MathSciNetzbMATHGoogle Scholar
  17. [17]
    Kolm, A. and B. Nagel: A generalized edge of the wedge theorem, Comm. Math. Phys., 8 (1968), 185–203.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Martineau, A.: Distributions et valeurs au bord des fonctions holomorphes, Proc. Intern. Summer Course on the Theory of Distributions, Lisbon, 1964, pp.195–326.Google Scholar
  19. [19]
    Martineau, A.: Théorèmes sur le prolongement analytique du type "Edge of the Wedge Theorem", Séminaire Bourbaki, 20-ième année, No.340, 1967/68.Google Scholar
  20. [20]
    Martineau, A.: Le "edge of the wedge theorem" en théorie des hyperfonctions de Sato, Proc. Intern. Conf. on Functional Analysis, Tokyo, 1969, Univ. Tokyo Press, 1970, pp.95–106.Google Scholar
  21. [21]
    Morimoto, M.: Une remarque sur un théorème de "edge of the wedge" de A. Martineau, Proc. Japan Acad., 45 (1969), 446–448.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Morimoto, M.: Sur les ultradistributions cohomologiques, Ann. Inst. Fourier, 19 (1970), 129–153.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Morimoto, M.: Sur la décomposition du faisceau des germes de singularités d’hyperfonctions, J. Fac. Sci. Univ. Tokyo, Sect. IA 17 (1970), 215–239.MathSciNetzbMATHGoogle Scholar
  24. [24]
    Morimoto, M.: Un théorème de l’analyticité des hyperfonctions invariantes par les transformations de Lorentz, Proc. Japan Acad. 47 (1971), 534–536.MathSciNetCrossRefGoogle Scholar
  25. [25]
    Morimoto, M.: Support et support singulier de l’hyperfonction, Proc. Japan Acad., 47 (1971), 648–652.MathSciNetCrossRefGoogle Scholar
  26. [26]
    Morimoto, M.: La décomposition de singularités d’ultradistributions cohomologiques, Proc. Japan Acad., to appear.Google Scholar
  27. [27]
    Painlevé, P.: Sur les lignes singulières des fonctions analytiques, Ann. Fac. Sci. Univ. Toulouse, 2 (1938), 26.MathSciNetGoogle Scholar
  28. [28]
    Rudin, W.: Lectures on the Edge-of-the-Wedge Theorem, Regional Conference Series in Math. No.6, AMS, 1971.Google Scholar
  29. [29]
    Sato, M.: Theory of hyperfunctions I, II, J. Fac. Sci. Univ. Tokyo, Sect. I, 8 (1959–60), 139–193 and 398–437.MathSciNetzbMATHGoogle Scholar
  30. [30]
    Sato, M.: Hyperfunctions and differential equations, Proc. Intern. Conf. on Functional Analysis, Tokyo, 1969, Univ. Tokyo Press, 1970, pp.91–94.Google Scholar
  31. [31]
    Sato, M.: Regularity of hyperfunction solutions of partial differential equations, Actes Congrès intern. Math., 1970, Tome 2, pp.785–794.Google Scholar
  32. [32]
    Sato, M. and M. Kashiwara, Structure of hyperfunctions, Sûgaku-no-Ayumi, 15 (1970), 9–71 (in Japanese).Google Scholar
  33. [33]
    Schapira, P.: Théorie des Hyperfonctions, Springer Lecture Note No.126, 1970.Google Scholar
  34. [34]
    Schwartz, L.: Théorie des Distributions, Hermann, Paris, 1950–51.zbMATHGoogle Scholar
  35. [35]
    Siciak, J.: Separate analytic functions and envelopes of holomorphy of some lower dimensional subsets of ℂn, Ann. Polon. Math., 22 (1969), 145–171.MathSciNetCrossRefGoogle Scholar
  36. [36]
    Streater, R. F. and A. S. Wightman: PCT, Spin and Statistics, and All That, Benjamin, New York, 1964.zbMATHGoogle Scholar
  37. [37]
    Vladimirov, V. S.: On the edge of the wedge theorem of Bogolyubov Izv. Akad. Nauk SSSR, Ser. Mat., 26 (1962), 825–838 (in Russian).Google Scholar
  38. [38]
    Vladimirov, V. S.: Methods of the Theory of Functions of Several Complex Variables, Nauka, Moskva, 1964: English transl. MIT Press, Cambridge, Mass., 1966.Google Scholar
  39. [39]
    Bony, J. M.: Une extension du théorème de Holmgren sur l’unicité du problème de Cauchy, C. R. Acad. Sci. Paris, 268 (1969), 1103–1106.MathSciNetzbMATHGoogle Scholar
  40. [40]
    Hörmander, L.: A remark on Holmgren’s uniqueness theorem, J. Differential Geometry, 6 (1971), 129–134.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Mitsuo Morimoto
    • 1
  1. 1.Department of MathematicsSophia UniversityTokyoJapan

Personalised recommendations