Numerical Analysis pp 105-116 | Cite as
The Levenberg-Marquardt algorithm: Implementation and theory
Conference paper
First Online:
- 1.4k Citations
- 1 Mentions
- 11k Downloads
Preview
Unable to display preview. Download preview PDF.
References
- 1.Bard, Y. [1970]. Comparison of gradient methods for the solution of nonlinear parameter estimation problem, SIAM J. Numer. Anal. 7, 157–186.MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Brown, K. M. and Dennis, J. E. [1971]. New computational algorithms for minimizing a sum of squares of nonlinear functions, Department of Computer Science report 71-6, Yale University, New Haven, Connecticut.Google Scholar
- 3.Fletcher, R. [1971]. A modified Marquardt subroutine for nonlinear least squares, Atomic Energy Research Establishment report R6799, Harwell, England.Google Scholar
- 4.Fletcher, R. and Powell, M.J.D. [1963]. A rapidly convergent descent method for minimization, Comput. J. 6, 163–168.MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Hebden, M. D. [1973]. An algorithm for minimization using exact second derivatives, Atomic Energy Research Establishment report TP515, Harwell, England.Google Scholar
- 6.Kowalik, J. and Osborne, M. R. [1968]. Methods for Unconstrained Optimization Problems, American Elsevier.Google Scholar
- 7.Levenberg, K. [1944]. A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math. 2, 164–168.MathSciNetzbMATHGoogle Scholar
- 8.Marquardt, D. W. [1963]. An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11, 431–441.MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Osborne, M. R. [1972]. Some aspects of nonlinear least squares calculations, in Numerical Methods for Nonlinear Optimization, F. A. Lootsma, ed., Academic Press.Google Scholar
- 10.Osborne, M. R. [1975]. Nonlinear least squares — the Levenberg algorithm revisited, to appear in Series B of the Journal of the Australian Mathematical Society.Google Scholar
- 11.Powell, M. J. D. [1975]. Convergence properties of a class of minimization algorithms, in Nonlinear Programming 2, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press.Google Scholar
Copyright information
© Springer-Verlag 1978