The length of vectors in representation spaces

  • George Kempf
  • Linda Ness
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 732)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Birkes, Orbits of linear algebraic groups, Annals of Mathematics 93(1971), 459–475.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.zbMATHGoogle Scholar
  3. [3]
    A. Borel, Introduction aux groupes arithmetiques, Hermann, Paris, 1969.zbMATHGoogle Scholar
  4. [4]
    A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Annals of Mathematics 75(1962), 485–535.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.zbMATHGoogle Scholar
  6. [6]
    G. Kempf, Instability invariant theory, Annals of Mathematics, to appear.Google Scholar
  7. [7]
    G. Mostow and T. Tamagawa, On the compactness of arithmetically defined homogeneous spaces, Annals of Mathematics 76(1962).Google Scholar
  8. [8]
    D. Mumford, Geometric Invariant Theory, Ergebnisse der Math. (34), Springer-Verlag, Berlin, 1965.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • George Kempf
    • 1
    • 2
  • Linda Ness
    • 3
    • 4
  1. 1.The Johns Hopkins UniversityBaltimoreUSA
  2. 2.Princeton UniversityUSA
  3. 3.University of WashingtonSeattleUSA
  4. 4.The Institute for Advanced StudyUSA

Personalised recommendations