Subclasses of univalent functions

  • Grigore Stefan Salagean
II Section — Function Theory Of One Complex Variable
Part of the Lecture Notes in Mathematics book series (LNM, volume 1013)


Univalent Solution Convex Function Integral Operator Unit Disc Identity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. EENIGENBURG, S.S. MILLER, P.T. MOCANU and M.O. READE, On a Briot-Bouquet differential subordination (to appear).Google Scholar
  2. 2.
    J. FENG, D.R. WILKEN, A remark on convex and starlike functions, J. London Math. Soc., 21 (1980), 287–290.MathSciNetzbMATHGoogle Scholar
  3. 3.
    W.K. HAYMAN, Multivalent functions, Cambridge Univ. Press, 1958.Google Scholar
  4. 4.
    A. MARX, Unteruchungen über schlichte Abildungen, Math. Ann., 107 (1932/33), 40–67.MathSciNetCrossRefGoogle Scholar
  5. 5.
    S.S. MILLER and P.T. MOCANU, Univalent solutions of Briot-Bouquet differential equations (to appear).Google Scholar
  6. 6.
    S.S. MILLER, P.T. MOCANU and M.O. READE, Starlike integral operators, Pacific J., 79,Nr. 1 (1978), 157–168.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. RUSCHEWEYH, New criteria for univalent functions, Proc. Amer. Math. Soc., 49, Nr. 1 (1975), 109–115.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. SILVERMAN and E.M. SILVIA, The influence of the second coefficient on prestarlike functions, Rocky Mountain J., 10, Nr. 3 (1980), 469–474.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. STROHHÄCKER, Beiträge zur Theorie der schlichten Functionen, Math. Z., 37 (1933), 356–380.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Grigore Stefan Salagean
    • 1
  1. 1.Department of MathematicsBabes-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations