Asymptotic behavior of a model in population genetics

  • H. F. Weinberger
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 648)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    ARONSON, D.G. and WEINBERGER, H.F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, vol.446, Springer, 1975, pp. 5–49.MathSciNetCrossRefGoogle Scholar
  2. 2.
    ARONSON, D.G. and WEINBERGER, H.F., Multidimensional non-linear diffusion arising in population genetics, Advances in Math. (in print).Google Scholar
  3. 3.
    FELLER, W., An Introduction to Probability Theory and its Applications, vol. II, Wiley, 1966.Google Scholar
  4. 4.
    FIFE, P.C., and McLEOD, J.B., The approach of solutions of non-linear diffusion equations to travelling wave solutions, Bull. Amer. Math. Soc. 81 (1975), pp. 1076–1078.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    FIFE, P.C. and PELETIER, L.A., Nonlinear diffusion in population genetics, Arch. for Rat. Mech. and Anal. 64 (1977), pp. 93–110.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    FISHER, R.A., The advance of advantageous genes, Ann. of Eugenics 7 (1937), pp. 355–369.CrossRefGoogle Scholar
  7. 7.
    FLEMING, W.H., A selection-migration model in population genetics, J. Math. Biol. 2(1975), pp. 219–233.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    HAMMERSLEY, J.M., Postulates for subadditive processes, Annals of Probability 2 (1974), pp. 652–680.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    KANEL', JA.I., Stabilization of solutions of the Cauchy problem encountered in combustion theory, Mat. Sbornik (N.S.) 59 (101) (1962), supplement, pp. 245–288.MathSciNetGoogle Scholar
  10. 10.
    KANEL', JA.I., On the stability of solutions of the equation of combustion theory for finite initial functions, Mat. Sbornik (N.S.) 65 (107) (1964), pp. 398–413.MathSciNetGoogle Scholar
  11. 11.
    KOLMOGOROFF, A., PETROVSKY, I., and PISCOUNOFF, N., Etude de l'équation de la diffusion avec croissance de la quantité de matiere et son application à un problème biologique, Bull. Univ. Moskou, Ser. Internat., Sec. A, 1 (1937) #6, pp. 1–37.Google Scholar
  12. 12.
    NAGYLAKI, T., Conditions for the existence of clines, Genetics 80 (1975), pp. 595–615.Google Scholar
  13. 13.
    SLATKIN, M., Gene flow and selection in a cline, Genetics 75 (1973), pp. 733–756.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. F. Weinberger
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaUSA

Personalised recommendations