On the rationality of certain moduli spaces related to curves of genus 4

  • F. Catanese
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1008)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arbarello, E.-Sernesi, E.: The equation of a plane curve, Duke Math.J. 46, 2(1979), 469–485.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Catanese, F.: Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications, Inv.Math. 63(1981), 433–465.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Catanese, F.-Ceresa, G.: Constructing sextic surfaces with a given number d of nodes, J.Pure & Appl.Alg. 23(1982), 1–12.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Clemens, H.: Double solids, Advances in Mathematics, to appear.Google Scholar
  5. [5]
    Coble, A.B.: Algebraic geometry and theta functions, Coll.Publ. of the A.M.S. vol.10 (1929) (reprint 1961).Google Scholar
  6. [6]
    Donagi, R.: The unirationality of A5, to appear.Google Scholar
  7. [7]
    Harris, J.-Mumford, D.: On the Kodaira dimension of the moduli space of curves, Inv.Math.67, 1(1982) 23–86.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Igusa, J.I.: Arithmetic variety of moduli for genus two, Annals of Math. 72(1960), 612–649.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Mori, S.: The uniruledness of M11, to appear.Google Scholar
  10. [10]
    Mumford, D.: Geometric invariant theory, Springer Verlag (1965).Google Scholar
  11. [11]
    Mumford, D.: Varieties defined by quadratic equations, in "Questions on algebraic varieties", C.I.M.E. Varenna, 1969, Cremonese.Google Scholar
  12. [12]
    Mumford, D.: Prymvarieties I, in "Contributions to Analysis", Academic Press (1974), 325–350.Google Scholar
  13. [13]
    Recillas, S.: La variedad de los modulos de curvas de genero 4 es unirracional, Ann.Soc.Mat. Mexicana (1971).Google Scholar
  14. [14]
    Sernesi, E.: L'unirazionalitá della varietá dei moduli delle curve di genere dodici, Ann. Scuola Norm.Sup. Pisa, 8(1981), 405–439.MathSciNetMATHGoogle Scholar
  15. [15]
    Serre, J.P.: Linear representations of finite groups, G.T.M. 42, Springer Verlag (1977).Google Scholar
  16. [16]
    Severi, F.: Vorlesungen über Algebra>ischen Geometrie, Teubner, Leipzig (1921).CrossRefGoogle Scholar
  17. [17]
    Van der Geer, G.: On the geometry of a Siegel modular threefold, Math.Ann. 260, (1982) 317–350.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Wirtinger, W.: Untersuchungen über Thetafunktionen, Teubner, Leipzig (1895).MATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • F. Catanese
    • 1
  1. 1.Dip. di MatematicaUniversitá di PISA

Personalised recommendations