On the rationality of certain moduli spaces related to curves of genus 4

  • F. Catanese
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1008)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arbarello, E.-Sernesi, E.: The equation of a plane curve, Duke Math.J. 46, 2(1979), 469–485.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Catanese, F.: Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications, Inv.Math. 63(1981), 433–465.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Catanese, F.-Ceresa, G.: Constructing sextic surfaces with a given number d of nodes, J.Pure & Appl.Alg. 23(1982), 1–12.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Clemens, H.: Double solids, Advances in Mathematics, to appear.Google Scholar
  5. [5]
    Coble, A.B.: Algebraic geometry and theta functions, Coll.Publ. of the A.M.S. vol.10 (1929) (reprint 1961).Google Scholar
  6. [6]
    Donagi, R.: The unirationality of A5, to appear.Google Scholar
  7. [7]
    Harris, J.-Mumford, D.: On the Kodaira dimension of the moduli space of curves, Inv.Math.67, 1(1982) 23–86.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    Igusa, J.I.: Arithmetic variety of moduli for genus two, Annals of Math. 72(1960), 612–649.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Mori, S.: The uniruledness of M11, to appear.Google Scholar
  10. [10]
    Mumford, D.: Geometric invariant theory, Springer Verlag (1965).Google Scholar
  11. [11]
    Mumford, D.: Varieties defined by quadratic equations, in "Questions on algebraic varieties", C.I.M.E. Varenna, 1969, Cremonese.Google Scholar
  12. [12]
    Mumford, D.: Prymvarieties I, in "Contributions to Analysis", Academic Press (1974), 325–350.Google Scholar
  13. [13]
    Recillas, S.: La variedad de los modulos de curvas de genero 4 es unirracional, Ann.Soc.Mat. Mexicana (1971).Google Scholar
  14. [14]
    Sernesi, E.: L'unirazionalitá della varietá dei moduli delle curve di genere dodici, Ann. Scuola Norm.Sup. Pisa, 8(1981), 405–439.MathSciNetMATHGoogle Scholar
  15. [15]
    Serre, J.P.: Linear representations of finite groups, G.T.M. 42, Springer Verlag (1977).Google Scholar
  16. [16]
    Severi, F.: Vorlesungen über Algebra>ischen Geometrie, Teubner, Leipzig (1921).CrossRefGoogle Scholar
  17. [17]
    Van der Geer, G.: On the geometry of a Siegel modular threefold, Math.Ann. 260, (1982) 317–350.MathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    Wirtinger, W.: Untersuchungen über Thetafunktionen, Teubner, Leipzig (1895).MATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • F. Catanese
    • 1
  1. 1.Dip. di MatematicaUniversitá di PISA

Personalised recommendations