Quasimultipliers, representations of H, and the closed ideal problem for commutative Banach algebras

  • J. Esterle
I. General Theory Of Radical Banach Algebras
Part of the Lecture Notes in Mathematics book series (LNM, volume 975)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Akkar, Etude spectrale et structure des algèbres topologiques et bornologiques complètes, Thèse de Doctorat d'Etat de Mathématiques, Bordeaux, 1976.Google Scholar
  2. [2]
    G. R. Allan, Elements of finite closed descent in a Banach algebra, J. London Math. Soc., 7 (1973), 462–466.MathSciNetMATHGoogle Scholar
  3. [3]
    Ideals of rapidly growing functions, Proceedings International Symposium on functional analysis and its applications, Ibadan, Nigeria (1977), 85–109.Google Scholar
  4. [4]
    G. R. Allan, H. G. Dales and J. P. McClure, Pseudo-Banach algebras, Studia Math., 40 (1971), 55–69.MathSciNetMATHGoogle Scholar
  5. [5]
    M. Altman, Contracteurs dans les algèbres de Banach, C. R. Acad. Sci. Paris Ser A-B, 274 (1972), 399–400.MathSciNetMATHGoogle Scholar
  6. [6]
    C. Apostol, Functional calculus and invariant subspaces, J. Operator Theory, 4 (1980), 159–190.MathSciNetMATHGoogle Scholar
  7. [7]
    A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math., 144 (1980), 27–63.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    W. G. Bade and H. G. Dales, Norms and ideals in radical convolution algebras, J. Functional Analysis, 41 (1981), 77–109.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    B. Beauzamy, Sous espaces invariants de type fonctionnel dans les espaces de Banach, Acta Math., 144 (1980), 65–82.MathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    _____, Sous espaces invariants dans les espaces de Banach, Seminaire N. Bourbaki, 549, (Fevrier, 1980).Google Scholar
  11. [11]
    M. Berkani, Inegalités dans les algèbres de Banach et proprietés spectrales, Thèse de 3e cycle, Bordeaux (in preparation).Google Scholar
  12. [12]
    R. P. Boas, Entire Functions, Academic Press, New-York, 1954.MATHGoogle Scholar
  13. [13]
    F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, 1973.CrossRefMATHGoogle Scholar
  14. [14]
    _____, Numerical Ranges II, London Math. Soc. Lecture Note Series 10, Cambridge University Press, 1973.Google Scholar
  15. [15]
    S. Brown, B. Chevreau and C. Pearcy, Contractions with rich spectrum have invariant subspaces, J. Operator Theory, 1 (1979), 123–126.MathSciNetMATHGoogle Scholar
  16. [16]
    L. Carleson, Interpolation by bounded analytic functions and the corona problem, Annals of Math., 76 (1962), 547–559.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    I. Colojoara and C. Foias, Theory of Generalized Spectral Operators, Gordon and Breach, New-York, 1968.MATHGoogle Scholar
  18. [18]
    P. J. Cohen, Factorization in group algebras, Duke Math. J., 26 (1959), 199–206.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc., 10 (1978), 129–183.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    H. G. Dales, Convlution algebras on the real line, this Volume.Google Scholar
  21. [21]
    A. M. Davie, Invariant subspaces for Bishop's operators, Bull. Lond. Math. Soc., 6 (1974), 343–348.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Y. Domar, A solution of the translation-invariant subspace problem for weighted LP on ℝ, ℝ+ or ℤ, this Volume.Google Scholar
  23. [23]
    P. Enflo, On the Invariant Subspace Problem in Banach Spaces, Mittag-Leffler Institute Publications.Google Scholar
  24. [24]
    J. Esterle, Universal properties of some commutative radical Banach algebras, J. für die Reine und ang. Math., 321 (1981), 1–24.MathSciNetMATHGoogle Scholar
  25. [25]
    _____, Elements for a classification of commutative radical Banach algebras, this Volume.Google Scholar
  26. [26]
    W. Feller, On the generation of unbounded semigroups of bounded linear operators, Annals of Math., (2) 58 (1953), 166–174.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    S. Fisher, The convex hull of finite Blaschke products, Bull. Amer. Math. Soc., 74 (1968), 1128–1129.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    C. Foias and W. Mlak, The extended spectrum of completely nonunitary contractions and the spectral mapping theorem, Studia Math., 26 (1966), 239–245.MathSciNetMATHGoogle Scholar
  29. [29]
    B. Sz-Nagy and C. Foias, Analyse Harmonique des Operateurs de L'espace de Hilbert, Akademiai Kiadó, Budapest, 1967.MATHGoogle Scholar
  30. [30]
    C. Foias, C. M. Pearcy and B. Sz-Nagy, Contractions with spectral radius one and invariant subspaces, Acta Sci. Math., 43 (1981), 273–280.MathSciNetMATHGoogle Scholar
  31. [31]
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloquium Publications 31, Providence, 1957.Google Scholar
  32. [32]
    H. Hogbe-Nlend, Theorie des Bornologies et Applications, Springer-Verlag Lecture Notes, 273, 1971.Google Scholar
  33. [33]
    _____, Les fondements de la theorie spectrale des algèbres bornologiques, Bol. Soc. Brasil Math., 3 (1972).Google Scholar
  34. [34]
    B. E. Johnson, Continuity of centralizers on Banach algebras, J. Lond Math. Soc., 41 (1966), 639–640.CrossRefMATHGoogle Scholar
  35. [35]
    Ju Kwei Wang, Multipliers of commutative Banach algebras, Pacific J. Math., 11 (1961), 1131–1149.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    P. Koosis, Introduction to Hp Spaces, London Math Soc. Lecture Note Series 40, Cambridge University Press, 1980.Google Scholar
  37. [37]
    K. Koua, Multiplicateurs et quasimultiplicateurs dans les algèbres de Banach commutatives non-unitaires à unité approchée bornée, Thèse de 3e cycle, Bordeaux, Juin 1982.Google Scholar
  38. [38]
    _____, Un exemple d'algèbre de Banach commutative et radicale à unité approchée bornee sans multiplicateur non-trivial, submitted.Google Scholar
  39. [39]
    V. J. Lomonosov, Invariant subspaces for operators commuting with a compact operator, Funk. Anal. i Prilozen,7 (1973), 55–56.MathSciNetGoogle Scholar
  40. [40]
    B. Nyman, On the one dimensional translation group on certain function spaces, Thesis, Uppsala, 1960.Google Scholar
  41. [41]
    H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer-Verlag, New York, 1973.CrossRefMATHGoogle Scholar
  42. [42]
    M. Raouyane, Image numerique et elements hermitiens dans les algèbres bornologiques multiplicativement convexes complètes, Thèse de 3e cycle, Bordeaux, Décembre 1981.Google Scholar
  43. [43]
    M. Rome, Dilatations isometriques d'operateurs et le problème des sous espaces invariants, J. Operator Theory, 6 (1981), 39–50.MathSciNetMATHGoogle Scholar
  44. [44]
    I. Segal, Nine Introductions in Complex Analysis, Notas de Matematica 80, North Holland Math. Studies, North Holland, Amsterdam, 1981.Google Scholar
  45. [45]
    A. M. Sinclair, Bounded approximate identities, factorization, and a convolution algebra, J. Functional Analysis, 29 (1978), 308–318.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    _____, Cohen's factorization methods using an algebra of analytic functions, Proc. London Math. Soc., 39 (1979), 451–468.MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    _____, Continuous Semigroups in Banach Algebras, London Math. Soc. Lecture Note Series 63, Cambridge University Press, 1982.Google Scholar
  48. [48]
    N. Th. Varopoulos, Continuité des formes lineaires positives sur une algèbre de Banach avec involution, C. R. Acad. Sci. Paris Serie A–B, 258 (1964), 1121–1124.MathSciNetMATHGoogle Scholar
  49. [49]
    J. Wermer, The existence of invariant subspaces, Duke Math. J., 19 (1952), 615–622.MathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    F. Zouakia, The theory of Cohen elements, this Volume.Google Scholar
  51. [51]
    ____, Semigroupes reels dans certaines algèbres de Banach commutatives radicales, Thèse de 3e cycle, Bordeaux, Juin, 1980.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Esterle
    • 1
  1. 1.U.E.R. de Mathématiques et InformatiqueUniversité de Bordeaux ITalenceFrance

Personalised recommendations