Compactness of the Chow scheme: Applications to automorphisms and deformations of Kahler manifolds

  • David I. Lieberman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 670)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akao, K., On prehomogeneous compact Kahler manifolds, in Manifolds-Tokyo, 1973, University of Tokyo Press (1975) 365–372.zbMATHGoogle Scholar
  2. [2]
    Auslander, L., Green, L., and Hahn, F.; Flows on homogeneous spaces, Ann. Math. Studies No. 53, Princeton University Press. 1963, Page 157.Google Scholar
  3. [3]
    Barlet, D., Espace analytique reduit des cycles analytiques complexes compacts, in Fonctions de Plusiers variables complexes II, Springer Lecture Notes, Vol. 482 (1975) 1–158.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Barth, W. and Oeljeklaus, E., Uber die Albanesabbildung einer fast homogenen Kahler-Mannigfaltigkeit, Math Ann., 211 (1974) 47–62.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Bishop, E., Conditions for the analyticity of certain sets, Mich. Math J., 11 (1964) 289–304.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Blanchard, A., Sur les varietes analytiques complexes, Ann. Ec. Norm. Sup. 73 (1956) 157–202.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Borel, A. and Remmert, R., Uber kompakte homogene Kahlersche Manningfaltigkeiten, Math Ann. 145 (1961) 429–439.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Calabi, E., On Kahler manifolds with vanishing canonical class, in Algebraic Geometry and Topology, Lefschetz symposium, Princeton University Press, 1957, 78–89.Google Scholar
  9. [9]
    Carrell, J. and Lieberman, D., Holomorphic vector fields and Kahler manifolds, Invent. Math 21 (1973) 303–309.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Donin, I. F., Complete families of deformations of germs of complex spaces, Math. USSR Sbornik, 18 (1972) 397–406.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Douady, A., Le probleme des modules pour les sous-espaces analytiques d'un espace analytique donne, Ann Inst. Fourier (1966).Google Scholar
  12. [12]
    Grauert, H. and Fischer, W., Lokal-triviale Familien kompakter komplexer Mannigfaltigkeiten, Nachr. Akad. Wiss. Gottingen II (1965) 89–94.MathSciNetzbMATHGoogle Scholar
  13. [13]
    Hall, R., On algebraic varieties which possess finite continuous commutative groups of birational self-transformations, J. London Math Soc. 30 (1955) 507–511.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Hironaka, H., Flattening theorems in complex analytic geometry, Amer. J. Math, 97 (1975) 503–547.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    King, J., Currents defined by analytic varieties, Acta. Math 127 (1971) 185–219.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Kobayashi, S., Transformation Groups in Differential Geometry, Ergebnisse Math. Band 70, Springer Verlag, 1972.Google Scholar
  17. [17]
    Kodaira, K., and Spencer, D., On deformations of complex analytic structures, I, II. Annals of Math, 67 (1958) 328–466.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18] a)
    Lieberman, D., Holomorphic vector fields on projective varieties, in Proceedings of Symposia in Pure Math. Vol 30 (1976) 271–274.Google Scholar
  19. [18] b)
    Holomorphic vector fields and rationality, unpublished manuscript, 1973.Google Scholar
  20. [19] a)
    Lichnerowicz, A., Varietes kahleriennes et premiere classe de Chern, J. Diff. Geom. 1 (1967) 195–224.MathSciNetzbMATHGoogle Scholar
  21. [19] b)
    , Varietes kahleriennes a premiere classe de Chern nulle, C.R. Acad. Sci. 268 (1969) 876–880.MathSciNetzbMATHGoogle Scholar
  22. [20]
    Matsushima, Y., Holomorphic vector fields and the first Chern class of a Hodge manifold, J. Diff. Geom. 3 (1969) 477–480.MathSciNetzbMATHGoogle Scholar
  23. [21]
    Oeljeklaus, E., Fasthomogene Kahlermannigfaltigkeiten mit verschwindender erster Bettizahl, Manus. Math 7 (1972) 172–183.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [22]
    Roth, R., Sur les varietes algebriques qui admettent des groupes continues d'automorphismes, 3eme Coll. Geom. Alg., Centre Belge de Recherche, Math., Gauthier Villars, (1960) 29–41.Google Scholar
  25. [23]
    Sommese, A., Holomorphic vector fields on Kahler manifolds, Math Ann. 210, (1974) 75–82.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [24]
    Sommese, A., Extension theorems for reductive group actions on Kahler manifolds, Math Ann. 218 (1975) 107–116.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [25]
    Stoltzenberg, G., Volumes, limits, and continuity, Springer Math Lecture Notes 19 (1966).Google Scholar
  28. [26]
    Carrell, J., Holomorphically injective complex toral actions, Proc. Conf. on compact transformation groups, Springer Lecture Notes 299, 205–236.Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • David I. Lieberman

There are no affiliations available

Personalised recommendations