Sur Les Theoremes Limites Dans Certains Espaces De Banach Lisses

  • Michel Ledoux
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 990)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. de ACOSTA Exponential moments of vector valued random series and triangular arrays. Ann. Prob. 8, p. 381–389 (1980).MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. de ACOSTA Inequalities for B-valued random vectors with applications to the strong law of large numbers. Ann. Prob. 9, p. 157–161 (1981).MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    A. de ACOSTA, J. KUELBS Some results on the cluster set \(C(\{ \frac{{{}^sn}}{{{}^an}}\} )\) and the LIL. Preprint (1982).Google Scholar
  4. [4]
    S.A. CHOBANJAN V.I. TARIELADZE A counter example concerning CLT in Banach spaces. Probability theory on vector spaces. Lecture Notes in Math. 656, p. 25–30 (1978).CrossRefGoogle Scholar
  5. [5]
    J. DIESTEL Geometry of Banach spaces — Selected topics. Lecture Notes in Math.485 (1975).Google Scholar
  6. [6]
    W. FELLER A limit theorem for random variables with infinite moments. Amer. J. Math. 68, p. 257–262 (1946).MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    X. FERNIQUE Les vecteurs aléatoires gaussiens à valeurs dans les espaces de Banach à norme régulière. C.R. Acad. Sci. Paris 294, Série I, p. 317–319 (1982).MathSciNetMATHGoogle Scholar
  8. [8]
    T. FIGIEL On the moduli of convexity and smoothness. Studia Math. 56, p. 121–155 (1976).MathSciNetMATHGoogle Scholar
  9. [9]
    T. FIGIEL, G. PISIER Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses. C.R. Acad. Sci. Paris 279, Série A, p. 611–614 (1974).MathSciNetMATHGoogle Scholar
  10. [10]
    R. FORTET, E. MOURIER Les fonctions aléatoires comme éléments aléatoires dans les espaces de Banach. Studia Math. 15, p. 62–79 (1955).MathSciNetMATHGoogle Scholar
  11. [11]
    E. GINE, J.ZINN Central limit theorems and weak laws of large numbers in certain Banach spaces. Preprint (1981).Google Scholar
  12. [12]
    V. GOODMAN Growth rates for sums of i.i.d. Hilbert space valued random variables. Probability in Banach spaces III. Lecture Notes in Math. 860, p. 153–175 (1981).CrossRefGoogle Scholar
  13. [13]
    V. GOODMAN, J. KUELBS, J. ZINN Some results on the law of the iterated logarithm in Banach space with applications to weighted empirical processes. Ann. Prob. 9, p. 713–752 (1981).MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    B. HEINKEL Relation entre théorème central-limite et loi du logarithme itéré dans les espaces de Banach. Z. Wahr. verw. Geb. 49, p. 211–220 (1979).MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J. HOFFMANN-JØRGENSEN On the modulus of smoothness and the Gα-conditions in B-spaces. Aarhus Preprint Series 1974–75 no 2.Google Scholar
  16. [16]
    J. KUELBS, J. ZINN Some results on LIL behavior. Preprint (1981).Google Scholar
  17. [17]
    M. LEDOUX La loi du logarithme itéré bornée dans les espaces de Banach. Séminaire de Probabilités XV. Lecture Notes in Math. 850, p. 11–37 (1981).MathSciNetCrossRefGoogle Scholar
  18. [18]
    M. LEDOUX La loi du logarithme itéré pour les variables aléatoires prégaussiennes à valeurs dans les espaces de Banach à norme régulière. Séminaire de Probabilités XVI. Lecture Notes in Math. 920, p. 609–622 (1982).MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. LEDOUX La loi du logarithme itéré dans les espaces Lp (2≤p<∞). C.R. Acad. Sci. Paris 294, Série I, p. 321–324 (1982).MathSciNetMATHGoogle Scholar
  20. [20]
    J. LINDENSTRAUSS L. TZAFRIRI Classical Banach spaces II. Springer, Berlin (1979).CrossRefMATHGoogle Scholar
  21. [21]
    G. PISIER Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach. Séminaire Maurey-Schwartz 1975–76, exposés 3 et 4 (1975).Google Scholar
  22. [22]
    G. PISIER, J. ZINN On the limit theorems for random variables with values in the spaces Lp (2≤p<∞). Z. Wahr. verw. Geb. 41, p. 289–304 (1978).MathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    W.F. STOUT Almost sure convergence. Academic Press, New-York (1974).MATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Michel Ledoux
    • 1
    • 2
  1. 1.Laboratoire associé au C.N.R.S. no 1Institut De Recherche Mathematique AvanceeFrance
  2. 2.Département de MathématiqueUniversite Louis PasteurStrasbourg Cédex

Personalised recommendations