Majorizing measures and limit theorems for co-valued random variables

  • Bernard Heinkel
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 990)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. BILLINGSLEY (1968): Convergence of probability measures. Wiley, New York.MATHGoogle Scholar
  2. [2]
    S.A. CHOBANJAN (1982): private communication.Google Scholar
  3. [3]
    S.A. CHOBANJAN, V.I. TARIELADZE (1977): Gaussian characterizations of certain Banach spaces. J. Multivariate Analysis 7, 183–203.MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    B. HEINKEL (1977): Mesures majorantes et théorème de la limite centrale dans C(S). Z. Wahrscheinlichkeitstheorie 38, 339–351.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    B. HEINKEL (1980): Deux exemples d'utilisation de mesures majorantes. Séminaire de Probabilités 14, Lecture Notes in Math. 784, 1–16.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    B. HEINKEL (1981): Mesures majorantes et régularité de fonctions aléatoires.-Colloques internationaux du CNRS no 307-Aspects statistiques et aspects physiques des processus gaussiens. 407–434.Google Scholar
  7. [7]
    J. KUELBS (1976): A strong convergence theorem for Banach space valued random variables. Ann. Prob. 4, 744–771.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    J. KUELBS (1976): A counterexample for Banach space valued random variables Ann. Prob. 4, 684–689.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    J. KUELBS (1977): Kolmogorov law of the iterated logarithm for Banach space valued random variables. Ill. J. of Maths 21, 784–800.MathSciNetMATHGoogle Scholar
  10. [10]
    J. KUELBS (1981): When is the cluster set of Sn/an empty? Ann. Prob. 9, 377–394.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M. LEDOUX (1982): Loi du logarithme itéré dans C(S) et fonction caractéristique empirique. Z. Wahrscheinlichkeitstheorie 60, 425–435.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    V. PAULAUSKAS (1980): On the central limit theorem in the Banach space co. Soviet. Math. Dokl. 22-2, 349–351.MathSciNetMATHGoogle Scholar
  13. [13]
    V. PAULAUSKAS, A. RACKAUSKAS, V. SAKALAUSKAS (1982): On the CLT in the space of sequences converging to zero. To appear in Lietuvos matem. rink 23,1 (1983).Google Scholar
  14. [14]
    G. PISIER (1975): Le théorème de la limite centrale et la loi du logarithme itéré dans les espaces de Banach. Séminaire Maurey-Schwartz 1975–76. Ecole Polytechnique. Exposés no 3 et 4.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Bernard Heinkel
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeStrasbourg CedexFrance

Personalised recommendations