Advertisement

On the normalizer of γ0(N)

  • P. G. Kluit
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 601)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ATKIN A.O.L., LEHNER J.: Hecke operators on γ0(m), Math. Ann. 185, pp. 134–160 (1970).MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    BIRCH B.J.: Some calculations of modular relations, Modular Functions of One Variable I, Springer-Verlag, Lecture Notes in Math. 320, pp. 175–186.Google Scholar
  3. [3]
    FELL H., NEWMAN M., ORDMAN E.: Tables of genera of groups of linear fractional transformations, Journal of Research of the National Bureau of Standards, P. Math. and Math. Physics 678 (1), (1963).Google Scholar
  4. [4]
    FRICKE R.: Lehrbuch der Algebra, vol. 3, Braunschweig, Vieweg (1928)Google Scholar
  5. [5]
    HELLING H.: On the commensurability class of the rational modular group, Journal of the London Math. Soc. (2), pp. 67–72 (1970)Google Scholar
  6. [6]
    : Note über das Geschlecht gewisser arithmetischer Gruppen, Math. Ann. 205, pp. 173–179 (1973).MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    LEHNER J. and NEWMAN M.: Weierstrass points of γ0(n), Annals of Math., vol. 79 (2) (1964).Google Scholar
  8. [8]
    OGG A.P.: Hyperelliptic modular curves, Bull. Soc. Math. France 102, pp. 449–462 (1974)MathSciNetMATHGoogle Scholar
  9. [9]
    RALEIGH J.: The Fourier coefficients of the invariants j(21/2;τ) and j(31/2;τ), Transactions of the A.M.S., vol. 87 (1958), pp. 90–107.MathSciNetMATHGoogle Scholar
  10. [10]
    SHIMURA G.: Introduction to the arithmetic theory of automorphic functions, Princeton University Press (1971)Google Scholar
  11. [11]
    SMART J.R.: Parametrization of the automorphic forms for the Hecke groups G(√2) and G(√3), Duke Math. J., vol. 1, nr. 3, pp. 395–404 (1964)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • P. G. Kluit
    • 1
  1. 1.Vrije Universiteit de BoelelaanAmsterdam

Personalised recommendations