Whitehead products and differential forms
I. Gelfand-Fuks Theory And Characteristic Classes Of Foliations
First Online:
Keywords
Minimal Model Homotopy Class Homotopy Group Differential Algebra Grade Vector Space
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]N. BOURBAKI Groupes et Algèbres de Lie, Chapitre 2. Hermann, Paris 1972.Google Scholar
- [2]A. HAEFLIGER Sur la cohomologie de l'algèbre de Lie des champs de vecteurs, à paraître aux Annales de l'Ecole Normale Supérieure.Google Scholar
- [3]P.J. HILTON On the homotopy groups of the union of spheres. J. London Math. Soc. 30 (1955), p. 154–171.zbMATHMathSciNetGoogle Scholar
- [4]P.J. HILTON and U. STAMMBACH A course in homological Algebra, Springer Graduate Texts in Math. 4 (1971).Google Scholar
- [5]D. QUILLEN Rational homotopy theory. Annals of Math. 90 (1969), Appendix B, p. 279–295.MathSciNetCrossRefGoogle Scholar
- [6]N. STEENROD Cohomology invariants of mappings. Ann. of Math. 50 (1949), p. 954–988.zbMATHMathSciNetCrossRefGoogle Scholar
- [7]D. SULLIVAN (with P. DELIGNE, P. GRIFFITHS and J. MORGAN) Real homotopy theory of Kähler manifolds. Inventiones Math. 29 (1975), 245–274.zbMATHMathSciNetCrossRefGoogle Scholar
- [8]BOTT-BAUM Singularities of holomorphic foliations. J. Differential Geometry 7 (1972), 279–342.MathSciNetGoogle Scholar
- [9]A. HAEFLIGER Cohomology of Lie Algebras and Foliations, these Proceedings.Google Scholar
- [10]P. SCHWEITZER and A. WHITMAN Pontryagin polynomial residues of isolated foliation singularities, these Proceedings.Google Scholar
Copyright information
© Springer-Verlag 1978