On the mapping class group of simple 3-manifolds

  • Klaus Johannson
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 722)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CF 1]
    Cannon, J.W. — Feustel, C.D.: Essential embeddings of annuli and Möbius bands in 3-manifolds. Trans. A.M.S. 215 (1976), 219–239MathSciNetMATHGoogle Scholar
  2. [Fe 1]
    Feustel, C.D.: The torus theorem and its applications. Trans. A.M.S. 217 (1976), 1–43MathSciNetCrossRefMATHGoogle Scholar
  3. [Ha 1]
    Haken, W.: Theorie der Normalflächen, ein Isotopiekriterium für den Kreisknoten. Acta math. 105 (1961), 245–375MathSciNetCrossRefMATHGoogle Scholar
  4. [Ha 2]
    Haken, W.: Über das Homöomorphieproblem der 3-Mannigfaltigkeiten I. Math. Z. 80 (1962), 89–120MathSciNetCrossRefMATHGoogle Scholar
  5. [He 1]
    Heimon, G.: On the classification of homeomorphisms of 2-manifolds and the classification of 3-manifolds, preprintGoogle Scholar
  6. [Hp 1]
    Hempel, J.: 3-manifolds. Ann. of Math. Study 86, Princeton University Press, Princeton, New Jersey (1976)Google Scholar
  7. [Jo 1]
    Johannson, K.: Equivalences d'homotopie des variétés de dimension 3. C.R. Acad. Sci., Paris 281, Serie A (1975), 1009–1010Google Scholar
  8. [Jo 2]
    Johannson, K.: Homotopy equivalences of 3-manifolds with boundaries. Springer lecture notes, to appearGoogle Scholar
  9. [JS 1]
    Jaco, W.H. — Shalen, P.B.: Seifert fibered spaces in 3-manifolds, preprintGoogle Scholar
  10. [Li 1]
    Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds. Ann. of Math. 76 (3) (1962), 531–540MathSciNetCrossRefMATHGoogle Scholar
  11. [Li 2]
    Lickorish, W.B.R.: Homeomorphisms of non-orientable two-manifolds. Proc. Camb. Phil. Soc. 59 (1963), 307–317MathSciNetCrossRefMATHGoogle Scholar
  12. [Pa 1]
    Papakyriakopoulos, C.D.: On Dehn's lemma and the asphericity of knots. Ann. of Math. 66 (1957), 1–26MathSciNetCrossRefMATHGoogle Scholar
  13. [Schu 1]
    Schubert, H.: Knoten und Vollringe. Acta math. 80 (1953), 131–286MathSciNetCrossRefMATHGoogle Scholar
  14. [Sei 1]
    Seifert, H.: Topologie dreidimensionaler gefaserter Räume. Acta math. 60 (1933), 147–238MathSciNetCrossRefMATHGoogle Scholar
  15. [Swa 1]
    Swarup, G.A.: On a theorem of Johannson, preprintGoogle Scholar
  16. [Wa 1]
    Waldhausen, F.: Eine Klasse von 3-Mannigfaltigkeiten, I, II. Inventiones math. 3 (1967), 308–333, 4 (1967), 88–117MathSciNetCrossRefMATHGoogle Scholar
  17. [Wa 2]
    Waldhausen, F.: Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten. Topologie 6 (1967), 505–517MathSciNetCrossRefMATHGoogle Scholar
  18. [Wa 3]
    Waldhausen, F.: On irreducible 3-manifolds which are sufficiently large. Ann. of Math. 87 (1968), 56–88.MathSciNetCrossRefMATHGoogle Scholar
  19. [Wa 4]
    Waldhausen, F.: On the determination of some bounded 3-manifolds by their fundamental group alone. Proc. Int. Symp. Topology, Herceg Novi, Yugoslavia; Beograd (1969), 331–332Google Scholar
  20. [Wh 1]
    Whitehead, J.H.C.: On 2-spheres in 3-manifolds. B.A.M.S. 64 (1958), 161–166MathSciNetCrossRefMATHGoogle Scholar
  21. [Zi 1]
    Zieschang, H.: Lifting and projecting homeomorphisms. Archiv. d. Math. 14 (1973), 416–421.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Klaus Johannson
    • 1
  1. 1.Fakultät für MathematikUniversität BielefeldBielefeld 1West Germany

Personalised recommendations