Matrix Pencils pp 207-220 | Cite as

A method for computing the generalized singular value decomposition

  • GW Stewart
Section C Generalized Singular Values And Data Analysis
Part of the Lecture Notes in Mathematics book series (LNM, volume 973)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CHANDLER DAVIS AND W. M. KAHAN, The rotation of eigenvectors by a perturbation. III, SIAM J. Numer. Anal, 7 (1970), pp. 1–46.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    J. J. DONGARRA, C. B. MOLER, J. R. BUNCH, AND G. W. STEWART, LINPACK User's Guide, Society for Industrial and Applied Mathematics, Philadelphia, 1979.CrossRefMATHGoogle Scholar
  3. 3.
    G. GOLUB AND W. KAHAN, Calculating the singular values and pseudoinverse of a matrix, SIAM J. Numer. Anal., 2 (1965), pp.205–224MathSciNetMATHGoogle Scholar
  4. 4.
    C. C. PAIGE AND M. A. SAUNDERS, Towards a generalized singular value decomposition, SIAM J. Numer. Anal., 18 (1981), pp. 398–405.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    H. RUTISHAUSER, The Jacobi method for real symmetric matrices, Numer. Math. 9 (1966), pp. 1–10.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    G. W. STEWART, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Rev., 19 (1977), pp. 634–662.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    CHARLES F. VAN LOAN, A general matrix eigenvalue algorithm, SIAM J Numer. Anal., 12 (1975), pp 819–834.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    CHARLES F. VAN LOAN, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13 (1976), pp. 76–83.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • GW Stewart

There are no affiliations available

Personalised recommendations