Advertisement

A simple-minded proof of the Pisier-grothendieck inequality

  • Sten Kaijser
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 995)

Keywords

Banach Space Bilinear Form Main Lemma Compact Hausdorff Space Commutative Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. C. Blei, A uniformity property for λ(2) sets and Grothendieck’s inequality. Symposia Math. Vol. XXII (1977) 321–336.MathSciNetGoogle Scholar
  2. [2]
    J. F. Fournier, On a theorem of Paley and the Littlewood conjecture. Arkiv för Matematik 17 (1979) 199–216.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Brasil, Sao Paulo, 8 (1956), 1–79.zbMATHGoogle Scholar
  4. [4]
    J. L. Krivine, Théorèmes de factorisations dans les espaces réticulés. Sém. Maurey-Schwarz 73–74, exp. XXII–XXIII.Google Scholar
  5. [5]
    J. Lindenstrass and A. Pelczynski, Absolutely p-summing operators in L p-spaces and their applications. Studia Math. 29 (1968) 275–326.MathSciNetGoogle Scholar
  6. [6]
    J. Lindenstrass and L. Tzafriri, Classical Banach spaces. Springer, Berlin-Heidelberg-New York 1977.CrossRefGoogle Scholar
  7. [7]
    M. A. Naimark, Normed rings. P. Noordhoff N.V. Groningen 1964.Google Scholar
  8. [8]
    B. Maurey, Une nouvelle démonstration d’un theorème de Grothendieck. Sém. Maurey-Schwarz 72–73, exp. XXII.Google Scholar
  9. [9]
    A. Pelczynski, Banach spaces of analytic functions and absolutely summing operators. C.B.M.S. Regional Conference Series in Mathematics, 30, 1977.Google Scholar
  10. [10]
    G. Pisier, Grothendieck’s theorem for non-cummutative C*-algebras with an appendix on Grothendieck’s constants. J. Funct. Anal. 29 (1978) 397–415.MathSciNetCrossRefzbMATHGoogle Scholar

References for the Appendix

  1. [1]
    Bohnenblust, H. F., and Karlin, S., Geometrical properties of the unit sphere of Banach algebras. Ann. of Math. 62 (1955) 217–229.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Haagerup, Uffe, The Grothendieck inequality for bilinear forms on C*-algebras. Preprint, Odense University.Google Scholar
  3. [3]
    Kaijser, S., Representations of tensor algebras as quotients of group algebras. Arkiv f. Mat. 10 (1972) 107–141.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Tomczak-Jaegermann., On the moduli of smoothness and convexity and the Rademacher averages of the trace classes Sp (1≤p<∞). Studia Math. 50 (1974) 163–182.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Sten Kaijser

There are no affiliations available

Personalised recommendations